ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (24,936)
  • Molecular Diversity Preservation International
  • Periodicals Archive Online (PAO)
  • Physics  (24,936)
Collection
  • Articles  (24,936)
Years
Journal
  • 1
    Publication Date: 2021-10-29
    Description: We mainly focus on the effects of small changes of parameters on the dynamics of charged particles around Kerr black holes surrounded by an external magnetic field, which can be considered as a tidal environment. The radial motions of charged particles on the equatorial plane are studied via an effective potential. It is found that the particle energies at the local maxima values of the effective potentials increase with an increase in the black hole spin and the particle angular momenta, but decrease with an increase of one of the inductive charge parameter and magnetic field parameter. The radii of stable circular orbits on the equatorial plane also increase, whereas those of the innermost stable circular orbits decrease. On the other hand, the effects of small variations of the parameters on the orbital regular and chaotic dynamics of charged particles on the non-equatorial plane are traced by means of a time-transformed explicit symplectic integrator, Poincaré sections and fast Lyapunov indicators. It is shown that the dynamics sensitivity depends on small variations in the inductive charge parameter, magnetic field parameter, energy, and angular momentum. Chaos occurs easily as each of the inductive charge parameter, magnetic field parameter, and energy increases but is weakened as the angular momentum increases. When the dragging effects of the spacetime increase, the chaotic properties are not always weakened under some circumstances.
    Electronic ISSN: 2218-1997
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: Silicon-based optoelectronics large-scale integrated circuits have been of interest to the world in recent decades due to the need for higher complexity, larger link capacity, and lower cost. Surface plasmons are electromagnetic waves that propagate along the interface between a conductor and a dielectric, which can be confined several orders smaller than the wavelength in a vacuum and offers the potential for minimizing photonic circuits to the nanoscale. However, plasmonic waveguides are usually accompanied by substantial propagation loss because metals always exhibit significant resistive heating losses when interacting with light. Therefore, it is better to couple silicon-based optoelectronics and plasmonics and bridge the gap between micro-photonics and nanodevices, especially some nano-electronic devices. In this review, we discuss methods to enhance silicon-based optoelectronics by hybrid plasmon polaritons and summarize some recently reported designs. It is believed that by utilizing the strong light confinement of plasmonics, we can overcome the conventional diffraction limit of light and further improve the integration of optoelectronic circuits.
    Electronic ISSN: 2304-6732
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: A simple, efficient, and cost-effective extended graphite as a supporting platform further supported the MnO2 growth for the construction of hierarchical flower-like MnO2/extended graphite. MnO2/extended graphite exhibited an increase in sp2 carbon bonds in comparison with that of extended graphite. It can be expected to display better electrical conductivity and further promote electron/ion transport kinetics for boosting the electrochemical performance in supercapacitors and glucose sensing. In supercapacitors, MnO2/extended graphite delivered an areal capacitance value of 20.4 mF cm−2 at 0.25 mA cm−2 current densities and great cycling stability (capacitance retention of 83% after 1000 cycles). In glucose sensing, MnO2/extended graphite exhibited a good linear relationship in glucose concentration up to about 5 mM, sensitivity of 43 μA mM−1cm−2, and the limit of detection of 0.081 mM. It is further concluded that MnO2/extended graphite could be a good candidate for the future design of synergistic multifunctional materials in electrochemical techniques.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: Recently, various waste microplastics sensors have been introduced in response to environmental and biological hazards posed by waste microplastics. In particular, the detrimental effects of nano-sized plastics or nanoplastics have been reported to be severe. Moreover, there have been many difficulties for sensing microplastics due to the limited methodologies for selectively recognizing nanoplastics. In this study, a customized gold nanoparticles (Au NPs) based localized surface plasmon resonance (LSPR) system having bio-mimicked peptide probes toward the nanoplastics was demonstrated. The specific determination through the oligo-peptide recognition was accomplished by chemical conjugation both on the LSPR chip’s 40~50 nm Au NPs and sandwiched 5 nm Au NPs, respectively. The peptide probe could selectively bind to polystyrene (PS) nanoplastics in the forms of fragmented debris by cryo-grinding. A simple UV-Vis spectrophotometer was used to identify the LSPR sensing by primarily measuring the absorbance change and shift of absorption peak. The sandwich-binding could increase the LSPR detection sensitivity up to 60% due to consecutive plasmonic effects. In addition, microwave-boiled DI water inside of a styrofoam container was tested for putative PS nanoplastics resource as a real accessible sample. The LSPR system could be a novel protocol overcoming the limitations from conventional nanoplastic detection.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: The production of syngas (H2 and CO)—a key building block for the manufacture of liquid energy carriers, ammonia and hydrogen—through the dry (CO2−) reforming of methane (DRM) continues to gain attention in heterogeneous catalysis, renewable energy technologies and sustainable economy. Here we report on the effects of the metal oxide support (γ-Al2O3, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) on the low-temperature (ca. 500–750 °C) DRM activity, selectivity, resistance against carbon deposition and iridium nanoparticles sintering under oxidative thermal aging. A variety of characterization techniques were implemented to provide insight into the factors that determine iridium intrinsic DRM kinetics and stability, including metal-support interactions and physicochemical properties of materials. All Ir/γ-Al2O3, Ir/ACZ and Ir/CZ catalysts have stable DRM performance with time-on-stream, although supports with high oxygen storage capacity (ACZ and CZ) promoted CO2 conversion, yielding CO-enriched syngas. CZ-based supports endow Ir exceptional anti-sintering characteristics. The amount of carbon deposition was small in all catalysts, however decreasing as Ir/γ-Al2O3 〉 Ir/ACZ 〉 Ir/CZ. The experimental findings are consistent with a bifunctional reaction mechanism involving participation of oxygen vacancies on the support’s surface in CO2 activation and carbon removal, and overall suggest that CZ-supported Ir nanoparticles are promising catalysts for low-temperature dry reforming of methane (LT-DRM).
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: Affect plays a major role in the individual’s daily life, driving the sensemaking of experience, psychopathological conditions, social representations of phenomena, and ways of coping with others. The characteristics of affect have been traditionally investigated through physiological, self-report, and behavioral measures. The present article proposes a text-based measure to detect affect intensity: the Affective Saturation Index (ASI). The ASI rationale and the conceptualization of affect are overviewed, and an initial validation study on the ASI’s convergent and concurrent validity is presented. Forty individuals completed a non-clinical semi-structured interview. For each interview transcript, the ASI was esteemed and compared to the individual’s physiological index of propensity to affective arousal (measured by heart rate variability (HRV)); transcript semantic complexity (measured through the Semantic Entropy Index (SEI)); and lexical syntactic complexity (measured through the Flesch–Vacca Index (FVI)). ANOVAs and bi-variate correlations estimated the size of the relationships between indexes and sample characteristics (age, gender), then a set of multiple linear regressions tested the ASI’s association with HRV, the SEI, and the FVI. Results support the ASI construct and criteria validity. The ASI proved able to detect affective saturation in interview transcripts (SEI and FVI, adjusted R2 = 0.428 and adjusted R2 = 0.241, respectively) and the way the text’s affective saturation reflected the intensity of the individual’s affective state (HRV, adjusted R2 = 0.428). In conclusion, although the specificity of the sample (psychology students) limits the findings’ generalizability, the ASI provides the chance to use written texts to measure affect in accordance with a dynamic approach, independent of the spatio-temporal setting in which they were produced. In doing so, the ASI provides a way to empower the empirical analysis of fields such as psychotherapy and social group dynamics.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-28
    Description: The utilization of high-calcium fly ashes (HCFA) from coal-fired power plants in the construction industry is problematic, since their high free lime contents can lead to durability problems. In this research, the carbonation of a high-CaO fly ash has been carried out using simulated flue gas and concentrated CO2, with the aim to assess the valorization potential of such materials in the construction industry. The results show that, at 7 bars total pressure, an up to 36% carbonation efficiency can be achieved in just 30 min when pure CO2 is used; a comparable result with flue gas requires about 4 h of reaction. On the other hand, experiments carried out at atmospheric pressure show significantly different carbonation efficiencies depending on the CO2 concentration of the gas used. All experiments resulted in a substantial reduction in the original free lime content, and after reaction times of 4 h (at atmospheric pressure) and pressures of 7 bars (for any reaction time 〉30 min), the final free lime values were low enough to comply with the requirements of European Standards for their utilization as additions in cement.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: Odd Radio Circles (ORCs) are unexpected faint circles of diffuse radio emission discovered in recent wide deep radio surveys. They are typically about one arcmin in diameter, and may be spherical shells of synchrotron emission about a million light years in diameter, surrounding galaxies at a redshift of ∼0.2–0.6. Here we study the properties and environment of the known ORCs. All three known single ORCs either lie in a significant overdensity or have a close companion. If the ORC is caused by an event in the host galaxy, then the fact that they tend to be in an overdensity, or have a close companion, may indicate that the environment is important in creating the ORC phenomenon, possibly because of an increased ambient density or magnetic field.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-28
    Description: The Jeffreys divergence is a renown arithmetic symmetrization of the oriented Kullback–Leibler divergence broadly used in information sciences. Since the Jeffreys divergence between Gaussian mixture models is not available in closed-form, various techniques with advantages and disadvantages have been proposed in the literature to either estimate, approximate, or lower and upper bound this divergence. In this paper, we propose a simple yet fast heuristic to approximate the Jeffreys divergence between two univariate Gaussian mixtures with arbitrary number of components. Our heuristic relies on converting the mixtures into pairs of dually parameterized probability densities belonging to an exponential-polynomial family. To measure with a closed-form formula the goodness of fit between a Gaussian mixture and an exponential-polynomial density approximating it, we generalize the Hyvärinen divergence to α-Hyvärinen divergences. In particular, the 2-Hyvärinen divergence allows us to perform model selection by choosing the order of the exponential-polynomial densities used to approximate the mixtures. We experimentally demonstrate that our heuristic to approximate the Jeffreys divergence between mixtures improves over the computational time of stochastic Monte Carlo estimations by several orders of magnitude while approximating the Jeffreys divergence reasonably well, especially when the mixtures have a very small number of modes.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-28
    Description: The accurate detection of corneal edema has become a topic of growing interest with the generalization of endothelial keratoplasty. Despite recent advances in deep learning for corneal edema detection, the problem of minimal edema remains challenging. Using transfer learning and a limited training set of 11 images, we built a model to segment the corneal epithelium, which is part of a three-model pipeline to detect corneal edema. A second and a third model are used to detect edema on the stroma alone and on the epithelium. A validation set of 233 images from 30 patients consisting of three groups (Normal, Minimal Edema and important Edema) was used to compare the results of our new pipeline to our previous model. The mean edema fraction (EF), defined as the number of pixels detected as edema divided by the total number of pixels of the cornea, was calculated for each image. With our previous model, the mean EF was not statistically different between the Normal and Minimal Edema groups (p = 0.24). With the current pipeline, the mean EF was higher in the Minimal Edema group compared to the Normal group (p 〈 0.01). The described pipeline constitutes an adjustable framework for the detection of corneal edema based on optical coherence tomography and yields better performances in cases of minimal or localized edema.
    Electronic ISSN: 2304-6732
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...