ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (471,889)
  • National Academy of Sciences
Collection
Language
Years
  • 1
    Publication Date: 2024-06-05
    Description: Significance Particulate organic carbon (POC) formed by photosynthesis in the sunlit surface ocean fuels the ecosystems in the dark ocean below. We show that mesoscale fronts and eddies, which are ubiquitous physical features in subtropical oceans, generate three-dimensional intrusions connecting the surface to deep ocean. Intrusions are enriched in total POC due to enhancement of small, nonsinking photosynthetic plankton and free-living bacteria that resemble surface microbial communities. Flow-driven export of POC, estimated using an approximation of eddy physics, is the same order of magnitude as export by sinking POC, which was previously thought to dominate export. These observations reveal coupling of surface and deep ocean productivity and biodiversity and give insight into mechanisms by which the ocean transports carbon to depth. Abstract Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-22
    Description: Orbital cyclicity is a fundamental pacemaker of Earth’s climate system. The Newark–Hartford Basin (NHB) lake sediment record of eastern North America contains compelling geologic expressions of this cyclicity, reflecting variations of climatic conditions in tropical Pangea during the Late Triassic and earliest Jurassic (~233 to 199 Ma). Climate modeling enables a deeper mechanistic understanding of Earth system modulation during this unique greenhouse and supercontinent period. We link major features of the NHB record to the combined climatic effects of orbital forcing, paleogeographic changes, and atmospheric p CO 2 variations. An ensemble of transient, orbitally driven climate simulations is assessed for nine time slices, three atmospheric p CO 2 values, and two paleogeographic reconstructions. Climatic transitions from tropical humid to more seasonal and ultimately semiarid are associated with tectonic drift of the NHB from ~ 5 ° N to 20 ° N . The modeled orbital modulation of the precipitation–evaporation balance is most pronounced during the 220 to 200 Ma interval, whereas it is limited by weak seasonality and increasing aridity before and after this interval. Lower p CO 2 at around 205 Ma contributes to drier climates and could have led to the observed damping of sediment cyclicity. Eccentricity-modulated precession dominates the orbitally driven climate response in the NHB region. High obliquity further amplifies summer precipitation through the seasonal shifts in the tropical rainfall belt. Regions with other proxy records are also assessed, providing guidance toward an integrated picture of global astronomical climate forcing in the Late Triassic and ultimately of other periods in Earth history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-13
    Description: Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the—widely anthropogenic—ongoing global warming.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-09
    Description: In this paper, we propose a new model of the crustal structure and seismotectonics for central Sicily (southern Italy) through the analysis of the depth distribution and kinematics of the instrumental seismicity, occurring during the period from 1983 to 2010, and its comparison with individual geological structures that may be active in the area. The analysed data set consists of 392 earthquakes with local magnitudes ranging from 1.0 to 4.7. We defined a new, detailed 1-D velocity model to relocate the earthquakes that occurred in central Sicily, and we calculated a Moho depth of 37 km and a mean VP/VS ratio of 1.73. The relocated seismic events are clustered mainly in the area north of Caltanissetta (e.g. Mainland Sicily) and in the northeastern sector (Madonie Mountains) of the study area; only minor and greatly dispersed seismicity is located in the western sector, near Belice, and along the southern coast, between Gela and Sciacca. The relocated hypocentral distribution depicts a bimodal pattern: 50 per cent of the events occur within the upper crust at depths less than ~16 km, 40 per cent of the events occur within the middle and depth crust, at depths between 16 and 32 km, and the remaining 10 per cent occur at subcrustal depths. The energy release pattern shows a similar depth distribution. On the basis of the kinematic analysis of 38 newly computed focal plane solutions, two major geographically distinct seismotectonic domains are distinguished: the Madonie Mountain domain, with prevalent extensional and extensional-oblique kinematics associated with upper crust Late Pliocene–Quaternary faulting, and the Mainland Sicily domain, with prevalent compressional and compressional-oblique kinematics associated with thrust faulting, at mid to deep crust depth, along the north-dipping Sicilian Basal Thrust (SBT). The stress inversion of the Mainland Sicily focal solutions integrated with neighbouring mechanisms available in the literature highlights a regional homogeneous compressional tensor, with a subhorizontal NNW–SSE-striking σ1 axis. In addition, on the basis of geodetic data, the Mainland Sicily domain may be attributed to the SSE-ward thrusting of the Mainland Sicily block along the SBT plane. Seismogenic shearing along the SBT at mid-crustal depths was responsible for the unexpected Belice 1968 earthquake (Mw 6.1), with evident implications in terms of hazard assessment.
    Description: Published
    Description: 1237-2252
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismicity and tectonics ; Continental tectonics: compressional ; Dynamics: seismotectonics ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-09
    Description: Episodic gas seepage occurs at the seafloor in the Gulf of Izmit (Sea of Marmara, NW Turkey) along the submerged segment of the North Anatolian Fault (NAF), which ruptured during the 1999 Mw7.4 Izmit earthquake, and caused tectonic loading of the fault segment in front of the Istanbul metropolitan area. In order to study gas seepage and seismic energy release along the NAF, a multiparametric benthic observatory (SN-4) was deployed in the gulf at the western end of the 1999 Izmit earthquake rupture, and operated for about 1 yr at 166 m water depth. The SN-4 payload included a three-component broad-band seismometer, as well as gas and oceanographic sensors. We analysed data collected continuously for 161 d in the first part of the experiment, from 2009 October to 2010 March. The main objective of our work was to verify whether tectonic deformation along the NAF could trigger methane seepage. For this reason, we considered only local seismicity, that is, within 100 km from the station. No significant (ML ≥ 3.6) local earthquakes occurred during this period; on the other hand, the seismometer recorded high-frequency SDEs (short duration events), which are not related to seismicity but to abrupt increases of dissolved methane concentration in the sea water that we called MPEs (methane peak events). Acquisition of current velocity, dissolved oxygen, turbidity, temperature and salinity, allowed us to analyse the local oceanographic setting during each event, and correlate SDEs to episodic gas discharges from the seabed. We noted that MPEs are the result of such gas releases, but are detected only under favourable oceanographic conditions. This stresses the importance of collecting long-term multiparametric time-series to address complex phenomena such as gas and seismic energy release at the seafloor. Results from the SN-4 experiment in the Sea of Marmara suggest that neither low-magnitude local seismicity, nor regional events affect intensity and frequency of gas flows from the seafloor.
    Description: Published
    Description: 850-866
    Description: 1T. Geodinamica e interno della Terra
    Description: 3A. Ambiente Marino
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: Time-series analysis ; Seismicity and tectonics ; Broad-band seismometers ; multiparametric seafloor observatory ; Izmit Gulf ; Sea of Marmara ; gas seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-09
    Description: The Sulmona plain (central Italy) is an intramontane basin of the Abruzzi Apennines that is known in the literature for its high seismic hazard. We use extensive measurements of ambient noise to map the fundamental frequency and to detect the presence of geological heterogeneities in the basin. We perform noise measurements along two basin-scale orthogonal transects, in conjunction with 2-D array experiments in specific key areas. The key areas are located in different positions with respect to the basin margins: one at the eastern boundary (fault-controlled basin margin) and one in the deepest part of the basin. We also collect independent data by using active seismic experiments (MASW), down-hole and geological surveys to characterize the near-surface geology of the investigated sites. In detail, the H/V noise spectral ratios and 2-D array techniques indicate a fundamental resonance (f0) in the low-frequency range (0.35–0.4 Hz) in the Sulmona Basin. Additionally, our results highlight the important role that is played by the alluvial fans near the edge-sectors of the basin, which are responsible for a velocity inversion in the uppermost layering of the soil profile. The H/V ratios and the dispersion curves of adjacent measurements strongly vary over a few dozens of meters in the alluvial fan area. Furthermore, we perform 1-D numerical simulations that are based on a linear-equivalent approach to estimate the site response in the key areas, using realistic seismic inputs. Finally, we perform a 2-D simulation that is based on the spectral element method to propagate surface waves in a simple model with an uppermost stiff layer, which is responsible for the velocity inversion. The results from the 2-D modelling agree with the experimental curves, showing deamplified H/V curves and typical shapes of dispersion curves of a not normally dispersive site.
    Description: Published
    Description: 418-439
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Fourier analysis, Earthquake ground motions, Site effects ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  EPIC3Reviews in Aquaculture, Wiley-Blackwell, ISSN: 1753-5123
    Publication Date: 2024-05-06
    Description: Mass mortality events (MMEs) are defined as the death of large numbers of fish over a short period of time. These events can result in catastrophic losses to the Atlantic salmon aquaculture industry and the local economy. However, they are challenging to understand because of their relative infrequency and the high number of potential factors involved. As a result, the causes and consequences of MMEs in Atlantic salmon aquaculture are not well understood. In this study, we developed a structural network of causal risk factors for MMEs for aquaculture and the communities that depend on Atlantic salmon aquaculture. Using the Interpretive Structural Modeling (ISM) technique, we analysed the causes of Atlantic salmon mass mortalities due to environmental (abiotic), biological (biotic) and nutritional risk factors. The consequences of MMEs were also assessed for the occupational health and safety of aquaculture workers and their implications for the livelihoods of local communities. This structural network deepens our understanding of MMEs and points to management actions and interventions that can help mitigate mass mortalities. MMEs are typically not the result of a single risk factor but are caused by the systematic interaction of risk factors related to the environment, fish diseases, feeding/nutrition and cage-site management. Results also indicate that considerations of health and safety risk, through pre- and post-event risk assessments, may help to minimize workplace injuries and eliminate potential risks of human fatalities. Company and government assisted socio-economic measures could help mitigate post-mass mortality impacts. Appropriate and timely management actions may help reduce MMEs at Atlantic salmon cage sites and minimize the physical and social vulnerabilities of workers and local communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-26
    Description: The sinking of particulate matter from the upper ocean dominates the export and sequestration of organic carbon by the biological pump, a critical component of the Earth's carbon cycle. Controls on carbon export are thought to be driven by ecological processes that produce and repackage sinking biogenic particles. Here, we present observations during the demise of the Northeast Atlantic Ocean spring bloom illustrating the importance of storm-induced turbulence on the dynamics of sinking particles. A sequence of four large storms caused upper layer mean turbulence levels to vary by more than three orders of magnitude. Large particle (>0.1 to 10 mm) abundance and size changed accordingly: increasing via shear coagulation when turbulence was moderate and decreasing rapidly when turbulence was intense due to shear disaggregation. Particle export was also tied to storm forcing as large particles were mixed to depth during mixed layer deepening. After the mixed layer shoaled, these particles, now isolated from intense surface mixing, grew larger and subsequently sank. This sequence of events matched the timing of sinking particle flux observations. Particle export was influenced by increases in aggregate abundance and porosity, which appeared to be enhanced by the repeated creation and destruction of aggregates. Last, particle transit efficiency through the mesopelagic zone was reduced by presumably biotic processes that created small particles (〈0.5 mm) from larger ones. Our results demonstrate that ocean turbulence significantly impacts the nature and dynamics of sinking particles, strongly influencing particle export and the efficiency of the biological pump.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-07
    Description: PI3K biology; lymphoma; cancer
    Keywords: PI3K biology; lymphoma; cancer ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: Secondary microseisms recorded by seismic stations are generated in the ocean by the interaction of ocean gravity waves.We present here the theory for modelling secondary microseismic noise by normal mode summation.We show that the noise sources can be modelled by vertical forces and how to derive them from a realistic ocean wave model. We then show how to compute bathymetry excitation effect in a realistic earth model by using normal modes and a comparison with Longuet–Higgins approach. The strongest excitation areas in the oceans depends on the bathymetry and period and are different for each seismic mode. Seismic noise is then modelled by normal mode summation considering varying bathymetry. We derive an attenuation model that enables to fit well the vertical component spectra whatever the station location. We show that the fundamental mode of Rayleigh waves is the dominant signal in seismic noise. There is a discrepancy between real and synthetic spectra on the horizontal components that enables to estimate the amount of Love waves for which a different source mechanism is needed. Finally, we investigate noise generated in all the oceans around Africa and show that most of noise recorded in Algeria (TAM station) is generated in the Northern Atlantic and that there is a seasonal variability of the contribution of each ocean and sea.
    Description: Published
    Description: 1732-1745
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Surface waves and free oscillations ; Seismic attenuation ; Theoretical seismology ; Wave propagation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...