ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of London
  • Leningrad
  • Periodicals Archive Online (PAO)
  • 2005-2009  (3,177)
  • 1905-1909
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Geological Society of London
    Publication Date: 2022-05-30
    Description: There is a longstanding and intimate relationship between myths and the Earth. Myths represent human beings in childhood when a primitive language made of symbols transmitted the wisdom necessary to live in harmony with nature. Today science uses mainly the language of data. Nevertheless, myths and legends are still popular and part of our culture, and the Earth sciences remain confined mostly to the world of scientists. This paper is an attempt, from the perspective of science communication, to provide a theory that uses myths and legends to stimulate the curiosity of the man in the street about the planet we live on. Recent studies have demonstrated that fictional stories can be used to convey science to the general public in an accurate, memorable and enjoyable way. Following these ideas, we believe that myths can be a useful tool for Earth science studies, learning and popularization.
    Description: Published
    Description: 61-66
    Description: 5.8. TTC - Formazione e informazione
    Description: reserved
    Keywords: earth, education, science communication, myth, geology ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geological Society of London
    In:  Geological Society special publication
    Publication Date: 2022-05-27
    Type: info:eu-repo/semantics/book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Geological Society of London, 2002. This article is posted here by permission of Geological Society of London for personal use, not for redistribution. The definitive version was published in Journal of the Geological Society 159 (2002): 95-103, doi: 10.1144/0016-764901034
    Description: Dalradian meta-sediments of the Laurentian margin and mafic intrusions thereof in SW Connemara, Ireland, tectonically overlie meta-rhyolites of the Delaney Dome Formation. The two units are separated by the Mannin Thrust. A new U–Pb age of 474.6 ± 5.5 Ma shows that the Delaney Dome Formation is a temporal equivalent of arc volcanic rocks preserved in the adjacent South Mayo Trough: the Tourmakeady Volcanic Group, erupted during the collision of an oceanic island arc with the Laurentian margin in the Grampian Orogeny. New rare earth and high field strength element data show that the Delaney Dome Formation and Tourmakeady Volcanic Group are chemically similar and arc-like in character. This suggests that the Delaney Dome Formation is an along-strike equivalent of the Tourmakeady Group, strike-slip faulted south of the South Mayo Trough during or after the Grampian Orogeny. Further correlation of these units with northern Appalachian rhyolites is also possible. The Delaney Dome Formation is an extrusive temporal equivalent of intrusions that penetrate the Connemara Dalradian. Thus, movement along the Mannin Thrust brought mid-crustal plutons and Dalradian country rocks tectonically above the extrusive volcanic sequence. The Mannin Thrust is identified as a major imbricating structure within a continental arc, but not a terrane boundary.
    Keywords: Ireland ; Grampian Orogeny ; U–Pb ; Geochemistry ; Subduction ; Plate collision
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 889535 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-08
    Description: New palaeomagnetic data from upper Triassic to Pliocene sediments reveal that in eastern Sicily a major 70° clockwise (CW) rotation took place between Oligocene and late Tortonian time, followed by a further 30° CW rotation. Results from central Sicily are less coherent. They show 44–83° post-Oligocene CW rotation, local 14° post-late Tortonian counterclockwise (CCW) rotation, and 25° post-mid-Pliocene CW rotation. We interpret the larger CW rotation observed in eastern Sicily as related to a more internal palaeogeographical position with respect to central Sicily. Our results complement pre-existing data from the northwestern Sicily carbonates, and indicate that all the internal carbonate nappes coherently rotated by c. 100° CW during tectonic emplacement, implying a west-to-east increase of shortening in the Sicilian Maghrebian belt. In Sicily, compressive deformation started during the Langhian, i.e. just after the deposition of the upper Oligocene–upper Burdigalian Numidian Flysch turbidites. Therefore the age of the older 70° palaeomagnetic rotation (synchronous to the thrusting) is constrained to occur between the Langhian and late Tortonian. Furthermore, by considering a maximum possible rotation rate of 20° Ma 1, we infer that CW rotation started in Sicily in Langhian–Serravallian times, between 15–16 and 11–12 Ma ago. The 100° CW rotation observed in pre-orogenic strata from the whole of Sicily is mirrored by 80° orogen-scale CCW rotations characterizing the internal southern Apennines. Palaeomagnetism therefore shows that during orogenesis, the southern Apennines and the Sicilian Maghrebides rotated in a 'saloon-door' fashion, synchronous to back-arc spreading of the southern Tyrrhenian Sea. Consequently, our palaeomagnetic data suggest that the southern Tyrrhenian back-arc basin started to spread during Langhian–Serravallian times (from 15–16 to 11–12 Ma), significantly earlier than the late Tortonian age (8 Ma) suggested so far by oceanic drilling data.
    Description: Published
    Description: 183-195
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Sicily ; Tyrrhenian Sea ; Maghrebides ; paleomagnetism ; plate rotation ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-26
    Description: We describe the evolution of the volcanic activity and deformation patterns observed at Mount Etna during the July–August 2001 eruption. Seismicity started at 3000 m below sea level on 13 July, accompanied by moderate ground swelling. Ground deformation culminated on 16 July with the development of a NE–SW graben c. 500 m wide and c. 1 m deep in the Cisternazza area at 2600–2500 m above sea level on the southern slope of the volcano. On 17 July, the eruption started at the summit of Mount Etna from the SE Crater (central–lateral eruptive system), from which two radial, c. 30 m wide, c. 3000 m long fracture zones, associated with eruptive fissures, propagated both southward (17 July) and northeastward (20 July). On 18 July, a new vent formed at 2100 m elevation, at the southern base of the Montagnola, followed on the next day by the opening of a vent further upslope, at 2550 m (eccentric eruptive system). The eruption lasted for 3 weeks. Approximately 80% of the total lava volume was erupted from the 2100 m and the 2550 m vents. The collected structural data suggest that the Cisternazza graben developed as a passive local response of the volcanic edifice to the ascent of a north–south eccentric dyke, which eventually reached the ground surface in the Montagnola area (18–19 July). In contrast, the two narrow fracture zones radiating from the summit are interpreted as the lateral propagation, from the conduit of the SE Crater, of north–south- and NE–SW-oriented shallow dykes, 2–3 m wide. The evolution of the fracture pattern together with other volcanological data (magma ascent and effusion rate, eruptive style, petrochemical characteristics of the erupted products, and petrology of xenoliths within magma) suggest that the eccentric and central–lateral eruptions were fed by two distinct magmatic systems. Examples of eccentric activity accompanied by central–lateral events have never been described before at Etna.
    Description: Published
    Description: 531-544
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; July–August 2001 Eruption ; magmas ; dykes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-28
    Description: The influence of pre-existing thrusts on the development of later normal faults was investigated using scaled laboratory analogue models. Experiments consisted of a phase of shortening followed by extension at variable angles of obliquity (a) to the shortening direction. Results suggest that the angle a has a major influence on the surface fault pattern and on the interaction between shortening-related structures and later extensional structures. Three different modes of interactions were identified depending upon the extension kinematics. (1) For orthogonal extension (a ¼ 08), shortening-related fold and thrust structures strongly influence the development of normal faults: graben structures nucleate within anticlines and the normal faults reactivate thrusts at depth (branching at depth mode of interaction). (2) For highly oblique extension (a 458), shortening-related structures exert no influence on normal faults as extension-related steeply-dipping faults (characterized by an oblique component of movement) displace early thrusts (no interaction mode). (3) For intermediate obliquity angles (a ¼ 158, 308), an intermediate mode of interaction characterizes the experiments, where the no interaction and branching at depth modes coexist in different regions of models. Modelling results can be used to infer regional extension directions as is shown for the Northern Appenines (Italy).
    Description: Published
    Description: 65-78
    Description: reserved
    Keywords: faults ; Interaction ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Geological Society of London
    In:  Journal of the Geological Society, 162 (6). pp. 959-972.
    Publication Date: 2018-03-23
    Description: East Asia is a region of widespread deformation, dominated by normal and strike-slip faults. Deformation has been interpreted to result from extrusion tectonics related to the India–Eurasia collision, which started in the Early Eocene. In East and SE China, however, deformation started earlier than the collision (latest Cretaceous to Palaeocene), suggesting that extrusion tectonics is not the (only) driving mechanism for East Asia deformation. It is suggested that the East Asian active margin has influenced deformation in East Asia significantly. Along the margin, Cenozoic back-arc extension took place behind several adjoining arcs, implying eastward rollback of the subducting slab and collapse of the overriding plate towards the retreating hinge-line. We show that extension took place along a c. 7400 km long stretch of the East Asian margin during most of the Cenozoic. Physical models are presented simulating overriding plate collapse and back-arc extension. The models reproduce important aspects of the strain field in East Asia. For geometrical and rheological conditions scaled to represent East Asia, modelling shows that the active margin can be held responsible for deformation in East Asia as far west as the Baikal rift zone, located c. 3300 km from the margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-05
    Description: The oldest rocks in New Zealand are the Mid- to Late Cambrian intra-oceanic island arc rocks of the Takaka terrane (Devil River arc). The provenance of Cambrian conglomerates stratigraphically above the exposed arc succession was studied to constrain the late stages of arc evolution and its accretion to continental crust. The Dead Goat Conglomerate contains two distinct groups of igneous clasts: (1) intermediate to felsic volcanic clasts with moderately enriched light rare earth element (LREE) and high field strength element (HFSE) contents and positive ϵNd500 (+2.1) that were derived from a medium-K calc-alkaline source, probably the main sequence of the Devil River arc; (2) dioritic to metagranitic plutonic clasts strongly enriched in LREE and HFSE and with ϵNd500 of +3.5 to +5.9 that were derived from a high-K arc source, probably the uppermost units of the Devil River arc. This is consistent with a new U–Pb sensitive high-resolution ion microprobe age of 496 ± 6 Ma. The Lockett Conglomerate also contains two distinct groups of igneous clasts: (1) ultramafic to intermediate igneous clasts identified as boninitic to transitional low-K calc-alkaline arc-related rocks based on depleted REE and HFSE abundances; (2) ‘I’-type metagranitoid clasts derived from a distinct Andean type continental margin, as indicated by ϵNd500 as low as −7.1. Both conglomerates contain sandstone clasts derived from a common old, multi-cycle continental source with ϵNd500 of −14.2 to −15.7, and no suitable source has been found in present-day New Zealand. The new provenance data from these conglomerates constrain the time of accretion of the Devil River arc to the palaeo-Pacific Gondwana margin and provide new information on the structural evolution of the accretionary event.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Geological Society of London
    In:  Journal of the Geological Society, 164 . pp. 129-141.
    Publication Date: 2017-10-05
    Description: Polygonal faults, mainly oriented N50, N110 and N170, are abundant in the upper part of the mud-dominated Kai Formation (upper Miocene–lower Pliocene) of the Vøring Basin. A second, less-developed tier of polygonal faults, oriented N20, N80 and N140, exists at the base of the overlying Naust Formation (upper Pliocene–Present). The faults abruptly terminate upward below a thick interval of debris flows. We propose a dynamic model in which: (1) the development of polygonal faults discontinues temporarily as a result of a change in regional sedimentation, leading to inactive polygonal faults; (2) rapid emplacement of debris flows in the late Pleistocene creates a new interval of polygonal faults in the lower part of the Naust Formation immediately beneath the debris flow and some faults penetrate into the underlying Kai Formation; (3) some polygonal faults within the Kai Formation are reactivated and propagated upward into the base of the Naust Formation. The high interconnectivity between faulted layers allows the fluids to reach shallower depths, forming well-expressed pipes and pockmarks on the sea floor. The model of cessation/reactivation of polygonal faults constrains the sealing capacity of sedimentary cover over the reservoirs and helps to reconstruct the fluid migration history through the sedimentary column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Geological Society of London
    In:  Journal of the Geological Society, 164 (1). pp. 227-242.
    Publication Date: 2017-06-27
    Description: Chimneys around hydrothermal vents at a depth of c. 140 m in the Horomatangi Reefs area in Lake Taupo, New Zealand, are composed of amorphous silica (opal-A) with lesser amounts of Mn-, Fe-, and Hg-rich precipitates. Detrital quartz and feldspar grains are found in the surrounding sediments. The associated biota includes fish, bacteria, sponges, crayfish, amphipods, copepods, ostracodes, annelids, and other unidentified organisms. Much of this biota, however, is not preserved in the opal-A deposits. Instead, the silicified biota includes filamentous microbes and diatoms, scattered coccoid microbes, fungal hyphae and spores, rare sponge spicules, and rare worm(?) tubes. The diatoms, coccoid microbes, and fungi were brought into the area with the detrital sediment. In ancient successions, distinction between sublacustrine, terrestrial, and some marine hot spring deposits may be difficult because the precipitates share many similarities. Distinction based on the biota is viable only if palaeoecological information can be inferred from accurately identified organisms. Unfortunately, silicification commonly disguises microbes and precludes their accurate identification. Diagenetic transformation of opal-A to its more stable polymorphs also destroys many original depositional fabrics and silicified microbes. Distinction between the different types of spring deposit may therefore depend on the interpretation of their overall sedimentological and stratigraphic setting.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...