ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (260,786)
  • PANGAEA  (184,621)
  • Oxford University Press  (49,474)
  • Public Library of Science
  • 2005-2009  (417,939)
  • 1960-1964  (90,729)
Collection
Keywords
Publisher
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-06-26
    Description: Two Polarstern expeditions were conducted in 1995 (ANT-XII/4) and 2001 (ANT-XVIII/5a) to the Bellingshausen Sea and Amundsen Sea and the suspected Eltanin meteorite impact in the SE-Pacific. A survey of the sediment distribution and its acoustic structure along the cruise track was performed. The seafloor topography was sampled using the multibeam sonar system Hydrosweep DS2 which operates on a frequency of 15.5 kHz. The resulting AWI Bathymetric Chart of the Eltanin Meteorite Impact Area is based on a Digital Terrain Model of this area. The mapping was performed using ArcGIS. The Eltanin impact area which covers the 4.100 m high Freden Seamount is visualized by one overview sheet of the scale 1:200,000 and four 1:100,000 subsheets.
    Keywords: ANT-XII/4; AWI_Paleo; Eltanin-impact-area; Eltanin Meteorite Impact Area, Freeden Seamount, SE-Pacific; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS35 06AQANTXII_4
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-06-26
    Description: During the fourth Antarctic voyage ANT-IV of the research icebreaker POLARSTERN standard meteorological measurements have been performed. The measurements include 3-hourly synoptic observations as well as daily upper air soundings. The measurements started on September 6 1985 at Bremerhaven and were terminated at April 28 1986 in Punta Arenas. The 3-hourly synoptic observations are performed following the instructions of the FM 13 ships code defined by the World Meteorological Organization (WMO). The datasets include automatic measurements such as mean ship's speed, wind velocity, wind direction, air temperature, water temperature as well as visual observations such as total cloud amount, present weather, clouds, height and period of swell waves, ice classification. The visual observation are not performed during night time. For the upper air soundings VAISALA RS80 radiosondes, carried by helium-filled balloons (TOTEX 350 - 1500) were used. Data reception and evaluation were carried out by a MicroCora System (VAISALA). The upper air soundings include profile measurements of pressure, temperature, relative humidity and wind vector. Usually the soundings started at the heliport (10 m above sea level) and terminated between 15 and 37 km. The height of the measurements was calculated by applying the barometric formula. The wind vector was determined with the aid of the OMEGA navigation system.
    Keywords: ANT-IV/1a; ANT-IV/1b; ANT-IV/1c; ANT-IV/2; ANT-IV/3; ANT-IV/4; AWI_Meteo; Canarias Sea; CT; Meteorological Long-Term Observations @ AWI; North Atlantic Ocean; North Sea; Polarstern; PS08; PS08/01331; PS08/01332; PS08/01333; PS08/01334; PS08/01335; PS08/01336; PS08/01337; PS08/01338; PS08/01339; PS08/01340; PS08/01341; PS08/01342; PS08/01343; PS08/01344; PS08/01345; PS08/01346; PS08/01347; PS08/01348; PS08/01349; PS08/01350; PS08/01351; PS08/01352; PS08/01353; PS08/01354; PS08/01355; PS08/01356; PS08/01357; PS08/01358; PS08/01359; PS08/01360; PS08/01361; PS08/01362; PS08/01363; PS08/01364; PS08/01365; PS08/01366; PS08/01367; PS08/01368; PS08/01369; PS08/01370; PS08/01371; PS08/01372; PS08/01373; PS08/01374; PS08/01375; PS08/01376; PS08/01377; PS08/01378; PS08/01379; PS08/01380; PS08/01381; PS08/01382; PS08/01383; PS08/01384; PS08/01385; PS08/01386; PS08/01387; PS08/01388; PS08/01389; PS08/01390; PS08/01391; PS08/01392; PS08/01393; PS08/01394; PS08/01395; PS08/01396; PS08/01397; PS08/01398; PS08/01399; PS08/01400; PS08/01401; PS08/01402; PS08/01403; PS08/01404; PS08/01405; PS08/01414; PS08/01415; PS08/01416; PS08/01417; PS08/01418; PS08/01419; PS08/01420; PS08/01421; PS08/01422; PS08/01423; PS08/01424; PS08/01425; PS08/01426; PS08/01427; PS08/01428; PS08/01429; PS08/01430; PS08/01431; PS08/01432; PS08/01433; PS08/01434; PS08/01435; PS08/01436; PS08/01437; PS08/01438; PS08/01439; PS08/01440; PS08/01441; PS08/01442; PS08/01443; PS08/01444; PS08/01445; PS08/01446; PS08/01447; PS08/01448; PS08/01449; PS08/01450; PS08/01451; PS08/01452; PS08/01453; PS08/01454; PS08/01455; PS08/01456; PS08/01457; PS08/01458; PS08/01459; PS08/01460; PS08/01461; PS08/01462; PS08/01463; PS08/01464; PS08/01465; PS08/01466; PS08/01467; PS08/01468; PS08/01469; PS08/01470; PS08/01471; PS08/01472; PS08/01473; PS08/01474; PS08/01475; PS08/01476; PS08/01477; PS08/01478; PS08/01479; PS08/01480; PS08/01481; PS08/01482; PS08/01483; PS08/01484; PS08/01485; PS08/01486; PS08/01487; PS08/01488; PS08/01489; PS08/01490; PS08/01491; PS08/01492; PS08/01493; PS08/01494; PS08/01495; PS08/01496; PS08/01497; PS08/01498; PS08/01499; PS08/01500; PS08/01501; PS08/01502; PS08/01503; PS08/01504; PS08/01505; PS08/01506; PS08/01507; PS08/01508; PS08/01509; PS08/01510; PS08/01511; PS08/01512; PS08/01513; PS08/01514; PS08/01515; PS08/01516; PS08/01517; PS08/01518; PS08/01519; PS08/01520; PS08/01521; PS08/01522; PS08/01523; PS08/1a-track; PS08/1b-track; PS08/1c-track; PS08/2-track; PS08/3-track; PS08/4-track; PS08 NOAMP; RADIO; Radiosonde; South Atlantic Ocean; Underway cruise track measurements
    Type: Dataset
    Format: application/zip, 191 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Berner, Heinrich (1991): Mechanismen der Sedimentbildung in der Framstrasse, im Arktischen Ozean und in der Norwegischen See. Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 20, 167 pp, urn:nbn:de:gbv:46-ep000106655
    Publication Date: 2024-06-26
    Description: The grain size distribution and clay mineral composition of lithogenic particles of ice-rafted material, sinking matter, surface sediments, as well as from deep-sea cores are analysed. The samples were collected in the Fram Strait, the Arctic Ocean, and the Norwegian Sea during several expeditions with the research vessels "Polarstern", "Meteor" and "Poseidon", and Norwegian rearch vessels. Sinking matter was caught with sediment traps, fitted with timer-controlled sample changers, which had been deployde in the sea for usually one year.
    Keywords: 104-1; 109-1; 111-2; 114-1; 117-1; 120-1; 121-1; 122-2; 57-04; 57-06; 57-07; 57-08; 57-09; 57-11; 57-12; 57-13; 57-14; 57-20; 58-08; Arctic Ocean; ARK-I/3; ARK-II/4; ARK-II/5; ARK-III/3; ARK-IV/3; BC; BI-1_trap; Box corer; Fram Strait; FS-1_trap; FS-2_trap; FS-3_trap; GC; GeoB; Geosciences, University of Bremen; Giant box corer; GIK16103-1; GIK16104-1; GIK16105-1; GIK16109-1; GIK16122-1; GIK16129-1; GIK16131-1; GIK16132-1; GIK16133-1; GIK16135-1; GIK16136-1; GIK16138-1; GIK16139-1; GIK16143-1; GIK16144-1; GIK16145-1; GIK16146-1; GIK16147-1; GIK16149-1; GIK16150-1; GIK16152-1; GIK16156-1; GIK16157-1; GIK16158-1; GIK16161-1; GIK16162-1; GIK16163-1; GIK16167-1; GIK16168-1; GIK16169-1; GIK16170-1; GIK16172-1; GIK16175-1; GIK16176-1; GIK16180-1; GIK21289-1 PS07/578; GIK21290-3 PS07/579; GIK21291-3 PS07/581; GIK21292-3 PS07/582; GIK21293-3 PS07/583; GIK21294-3 PS07/584; GIK21295-3 PS07/586; GIK21295-5 PS07/586; GIK21296-3 PS07/587; GIK21297-3 PS07/588; GIK21298-3 PS07/590; GIK21300-3 PS07/592; GIK21301-2 PS07/593; GIK21302-2 PS07/594; GIK21303-2 PS07/595; GIK21305-1 PS07/597; GIK21306-2 PS07/598; GIK21307-2 PS07/599; GIK21308-3 PS07/601; GIK21309-3 PS07/602; GIK21310-4 PS07/603; GIK21311-3 PS07/605; GIK21312-3 PS07/606; GIK21314-3 PS07/608; GIK21316-5 PS07/612; GIK21318-4 PS07/615; GIK21319-2 PS07/617; GIK21322-3 PS07/626; GIK21323-3 PS07/627; GIK21513-8 PS11/276-8; GIK21514-5 PS11/278-5; GIK21515-10 PS11/280-10; GIK21516-5 PS11/282-5; GIK21518-13 PS11/287-13; GIK21519-10 PS11/296-10; GIK21520-10 PS11/310-10; GIK21521-13 PS11/340-13; GIK21522-18 PS11/358-18; GIK21523-14 PS11/362-14; GIK21524-1 PS11/364-1; GIK21525-2 PS11/365-2; GIK21528-7 PS11/372-7; GIK21529-7 PS11/376-7; GIK21530-3 PS11/382-3; GIK21532-1 PS11/396-1; GIK23055-1; GIK23056-2; GIK23057-1; GIK23058-1; GIK23059-1; GIK23060-1; GIK23061-3; GIK23062-2; GIK23063-1; GIK23064-2; GIK23065-1; GIK23066-1; GIK23067-2; GIK23068-1; GIK23069-1; GIK23070-2; GIK23071-1; GIK23072-1; GIK23073-2; GIK23074-2; GIK23126-1 PS03/126; GIK23138-1 PS03/138; GIK23150-1 PS03/150; GIK23189-1 PS03/189; GIK23206-1 PS03/206; GIK23207-1 PS03/207; GIK23210-1 PS03/210; GIK23211-1 PS03/211; GIK23216-1 PS03/216; GIK23217-1 PS03/217; GIK23220-1 PS03/220; GIK23221-1 PS03/221; GIK23222-1 PS03/222; GIK23229-1 PS05/414; GIK23230-1 PS05/416; GIK23231-2 PS05/417; GIK23232-1 PS05/418; GIK23233-1 PS05/420; GIK23235-1 PS05/422; GIK23240-1 PS05/428; GIK23241-1 PS05/429; GIK23243-2 PS05/431; GIK23244-1 PS05/449; GIK23247-2 PS05/452; GIK23248-1 PS05/453; GKG; Gravity corer; Gravity corer (Kiel type); Håkon Mosby; HM52; HM52-02; HM57; HM57-04; HM57-05; HM57-06; HM57-07; HM57-08; HM57-09; HM57-11; HM57-12; HM57-13; HM57-14; HM57-20; HM58; HM58-02; HM58-08; HM82/83; ICE; Iceland Sea; Ice station; LB-1_trap; Lofoten Basin; M107-1; M118-1; M2/2; Meteor (1986); Mooring (long time); MOORY; Na-1_trap; Nansen Basin; NB-1_trap; Norway Slope; Norwegian Sea; Polarstern; PS03; PS05; PS07; PS1050-1; PS1060-1; PS1071-1; PS11; PS11/269-1; PS1105-1; PS1120-2; PS1121-1; PS1124-1; PS1125-1; PS1127-1; PS1128-1; PS1130-1; PS1131-1; PS1132-1; PS1229-1; PS1230-1; PS1231-2; PS1232-1; PS1233-1; PS1235-1; PS1240-1; PS1241-1; PS1243-2; PS1244-1; PS1247-2; PS1248-1; PS1289-1; PS1290-3; PS1291-3; PS1292-3; PS1293-3; PS1294-3; PS1295-3; PS1295-5; PS1296-3; PS1297-3; PS1298-3; PS1300-3; PS1301-2; PS1302-2; PS1303-2; PS1305-1; PS1306-2; PS1307-2; PS1308-3; PS1309-3; PS1310-4; PS1311-3; PS1312-3; PS1314-3; PS1316-5; PS1318-4; PS1319-2; PS1322-3; PS1323-3; PS1511-1; PS1513-8; PS1514-5; PS1515-10; PS1516-5; PS1518-13; PS1519-10; PS1520-10; PS1521-13; PS1522-18; PS1523-14; PS1524-1; PS1525-2; PS1528-7; PS1529-7; PS1530-3; PS1532-1; Quaternary Environment of the Eurasian North; QUEEN; Sea_Ice_A; Sea_Ice_B; Sea_Ice_C; Sea_Ice_D; SL; SP-1; SP-1_trap; Svalbard; Trap, sediment; TRAPS; Voering Plateau; Voring Plateau; VP-2_trap; Western Djupet
    Type: Dataset
    Format: application/zip, 18 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wollenburg, Jutta Erika; Mackensen, Andreas; Kuhnt, Wolfgang (2007): Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24.000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(3-4), 195-222, https://doi.org/10.1016/j.palaeo.2007.05.007
    Publication Date: 2024-06-26
    Description: Four sediment cores recovered from 1000 to 2500 m water depth in the Arctic Ocean, tracing the inflowing Atlantic water from Fram Strait, Yermak Plateau, northern Barents Sea continental slope as far as the Laptev Sea, have been analyzed for species richness and diversity. Samples were wet sieved after freeze-drying using a 63-µm sieve. Where possible at least 300 specimens were counted from the size fraction 〉63 µm, however, samples from deglacial periods are often affected by carbonate dissolution. In such samples foraminiferal numbers are low. Samples containing less than 40 specimens were excluded from statistical analyses. Because we are aware that specimen numbers 〈100 specimen are still critical for H analyses, core sections containing less than 100 specimens are highlighted in the figures. Here, we will characterize biodiversity trends by the two most widely used biodiversity measurements, the information function H (Buzas and Gibson, 1969) with its decomposition equation ln(S) and ln(E) (Buzas and Hayek, 1996), and the Fisher Alpha Index (Fisher, Corbett, and Williams, 1943). For spectral analysis the Fisher alpha record of core PS2837-5 was resampled at equally spaced 100-year intervals. For the spectral analysis, two methodes were used within the ANALYSERIES software package (Paillard et al., 1996): 1. The Blackman-Tuckey (1958) for its high confidence of the results; 2. The maximum entropy method (e.g. Haykin, 1983) for its high resolution. The cores reveal well-correlated biodiversity maxima and minima. Distinct periodicities of species richness variability of 1.57 kyr and 0.76 kyr characterize the Late Weichselian, and of 1.16 kyr and 0.54 kyr even more pronounced the Holocene. The biodiversity maxima/minima coincide with terrestrial and marine warm and cool events at high northern latitude. We suggest that either the physiology of most rare species is temperature sensitive, or sustained food supply increased the taxonomic richness during warmer intervals.
    Keywords: ARK-III/3; ARK-IX/4; ARK-VIII/3; ARK-XIII/2; AWI_Paleo; Fram Strait; GIK21290-4 PS07/579; Gravity corer (Kiel type); KAL; Kasten corer; Laptev Sea; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS07; PS1290-4; PS19/245; PS19 ARCTIC91; PS2212-3; PS2458-4; PS27; PS27/038; PS2837-5; PS44; PS44/065; SL; Yermak Plateau
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-26
    Description: Not filtered water samples were taken in 10 ml ampoules (sealed immediately after being acidified with phosphoric acid to pH〈2, sampling), or 40 ml screw-lid vials, and measured onboard at sampling or next days, or frozen (-20°C) until being acidified and measured in home labs. Carbon measurement was by high-temperature catalytic oxydation in a 10 cm column packed with 5% Pt on aluminum oxide beads at 900°C in a stream of oxygen, and CO2 detection by infrared extinction after the removal of moisture and SO2 by appropriate traps (cold trap, Mg-percarbonate, Na-pyrophosphate, tin, bronze or Sulfix). The apparatus was the dual channel Dimatek 2000 equipped with a Binos 200 detector. Nitrogen was measured by chemoluminescence detection of NO2 in the combustion gases after leaving the Binos detector in one of the two channels of the setup. Most measurements of samples containing high nitrate were discarded, when data were inconsistent. The nature of nitrate interference is not clear.
    Keywords: AL79A; AL79A_BY38; AL79A_F1; AL79A_F10; AL79A_F11; AL79A_F14; AL79A_F19; AL79A_F2; AL79A_F20; AL79A_F22; AL79A_F23; AL79A_F3; AL79A_F4; AL79A_F5; AL79A_F7; AL79A_F8; AL79A_F9; AL79A_S21; Alkor (1990); Baltic Sea; Bottle, Niskin 10-L; NIS_10L
    Type: Dataset
    Format: application/zip, 17 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zühlsdorff, Christine; Hanebuth, Till J J; Henrich, Rüdiger (2008): Persistent quasi-periodic turbidite activity off Saharan Africa and its comparability to orbital and climate cyclicities. Geo-Marine Letters, 28(2), 87-95, https://doi.org/10.1007/s00367-007-0092-0
    Publication Date: 2024-06-26
    Description: Based on a high-resolution sediment record from a submarine meandering canyon system offshore the present-day hyperarid Saharan Africa, two phases of turbidity-current activity can be distinguished during the past 13,000 years. Frequent, siliciclastic turbidity currents can be related to deglacial sea-level history, whereas rhythmically recurring fine-grained and carbonate-rich turbidity currents with recurrence times of roughly 900 years are inferred for the Holocene. Various trigger mechanisms can be considered to initiate turbidity currents, but only a few can explain a periodic turbidite activity. A comparison of Holocene turbidite recurrence times and basic cycles of 900 and 1,800 years found in various Holocene paleoclimate studies suggests that a previously unrecognized climate-related coupling may be active.
    Keywords: Center for Marine Environmental Sciences; GeoB8509-2; Gravity corer (Kiel type); M58/1; MARUM; Meteor (1986); SL
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-26
    Description: We present a new proxy, the oxygen isotope measurements (d18O) of radiolarian opal from sediment cores in the Subantarctic Zone (SAZ) and Permanent Open Ocean Zone (POOZ) of the Atlantic Southern Ocean. The SAZ core records of radiolarian and foraminiferal d18O are well correlated. In the POOZ core, only radiolarian 18O shifts to distinctly lower values during the glacial (when this core was in the Sea Ice Zone (SIZ)), while relevant foraminiferal and diatomaceous d18O records exhibit no such shift. This suggests a seasonal salinity change derived from the melting of snow accumulated on sea ice. We propose that a northward relocation of the Southern Ocean zonal system and enhanced water-vapor transport from lower latitudes forced the development of a stratified sea-surface in the northern SIZ during late glacial spring time. This raises unexpected aspects for numerical modeling of past atmospheric coupling and moisture transport, as well as on glacial Southern Ocean stratification and its implication for ocean/atmosphere gas exchange, water mass generation and productivity.
    Keywords: ANT-VIII/3; ANT-XI/2; AWI_Paleo; Gravity corer (Kiel type); Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS16; PS16/311; PS1768-8; PS2498-1; PS28; PS28/304; Shona Ridge; SL; South Atlantic
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-26
    Description: The presence of a complex bedform arrangement on the sea-floor of the continental shelf in the western Amundsen Sea Embayment, West Antarctica, indicates a multi-temporal record of flow related to the activity of one or more ice streams in the past. Mapping and division of the bedforms into distinct landform assemblages reveals their time-transgressive history, which implies that bedforms can neither be considered part of a single down-flow continuum nor a direct proxy for palaeo-ice velocity, as suggested previously. A main control on the bedform imprint is the geology of the shelf, which is divided broadly between rough bedrock on the inner shelf, and smooth, dipping sedimentary strata on the mid-to-outer shelf. Inner shelf bedform variability is well preserved, revealing information about local, complex basal-ice conditions, meltwater flow, and ice dynamics over time. These details, which are not apparent at the scale of regional morphological studies, indicate that past ice streams flowed across the entire shelf, at times, and often had onset zones that lay within the interior of the Antarctic Ice Sheet today. In contrast, highly elongated subglacial bedforms on sedimentary strata of the middle to outer shelf represent a timeslice snapshot of the last activity of ice-stream flow, and may be a truer representation of fast palaeo-ice flow in these locations. A revised model for ice streams on the shelf captures complicated multi-temporal bedform patterns associated with an Antarctic palaeo-ice stream for the first time, and confirms a strong substrate control on this ice stream system that drained the West Antarctic Ice Sheet during the Late Quaternary.
    Keywords: Amundsen Sea; ANT-XXIII/4; AWI_Paleo; GC; Giant box corer; GKG; Gravity corer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS69; PS69/259-1; PS69/265-3; PS69/266-1; PS69/267-1; PS69/267-2; PS69/269-1; PS69/269-2; PS69/272-2; PS69/272-3; PS69/275-2; PS69/280-1; PS69/283-5; PS69/283-6; PS69/284-1; PS69/284-2
    Type: Dataset
    Format: application/zip, 15 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kurentsova, Natalia A; Frolova, Tatyana I; Udintsev, Gleb B; Roshchina, I A (2007): On the geology of the Weddell Sea, Southern Ocean. Geochemistry International, 45(7), 717-725, https://doi.org/10.1134/S0016702907070075
    Publication Date: 2024-06-26
    Description: Studied samples represent bedrock occurrences rather than products of transportation by floating ice. Two regions were distinguished: the East Antarctic margin (submarine Maud Ridge) characterized by intensive destruction and oceanization of the continental crust, and the northwestern part of the Weddell Sea (Powell Basin), where spreading processes are superimposed on the weakly destructed continental crust. Volcanic rocks of the Maud Ridge derive from an enriched mantle source. The following geologic section was observed: young fresh porous basaltic porphyrites underlain by older massive basaltic porphyrites metamorphosed under greenschist-facies conditions. Presence of granulite-facies rocks suggests continental origin for these rocks. Mineralogical and geochemical features of magmatic rocks collected from various areas of the Weddell Sea floor may indicate contribution of deep fluids. We believe that the magmatic replacement of the Precambrian granite-metamorphic complex of the continental basement by basic-ultrabasic mantle material played the main role in transformation of the continental crust into the secondary oceanic crust. This process occurred under significant contribution of fluid flows and uneven activity of geologic processes, in contrast to formation of the primary oceanic crust because of seafloor spreading. Our results suggest that the basement of the Weddell Sea is of continental origin and has experienced extensive destruction.
    Keywords: Agassiz Trawl; AGT; ANT-XXII/3; Archive of Ocean Data; ARCOD; ATC; Polarstern; PS67/057-2; PS67/059-1; PS67/074-7; PS67/078-11; PS67/080-6; PS67/088-11; PS67/094-11; PS67/102-11; PS67/110-2; PS67/121-7a; PS67/142-6; PS67/151-1; PS67/153-8; PS67/154-7; PS67 ANDEEP 3; Trap, amphipod
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dorschel, Boris; Hebbeln, Dierk; Rüggeberg, Andres; Dullo, Wolf-Christian; Freiwald, André (2005): Growth and Erosion of a Cold-Water Coral Covered Carbonate Mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth and Planetary Science Letters, 233(1-2), 33-44, https://doi.org/10.1016/j.epsl.2005.01.035
    Publication Date: 2024-06-26
    Description: The first detailed stratigraphic record from a deep-water carbonate mound in the Northeast Atlantic based on absolute datings (U/Th and AMS 14C) and stable oxygen isotope records reveals that its top sediment sequences are condensed by numerous hiatuses. According to stable isotope data, mainly sediments with an intermediate signal are preserved on the mound, while almost all fully glacial and interglacial sediments have either not been deposited or have been eroded later. The resulting hiatuses reduce the Late Pleistocene sediment accumulation at Propeller Mound to amounts smaller than the background sedimentation. The hiatuses most likely result due to the sweeping of the mound in turn with the re-establishment of vigour interglacial circulation patterns after sluggish current regimes during glacials. Thus, within the discussion if internal, fluid-driven or external environmentally driven processes control the evolution of such carbonate mounds, our findings for Propeller Mound clearly point to environmental forcing as the dominant mechanism shaping deep-water carbonate mounds in the NE Atlantic during the Late Pleistocene and Holocene.
    Keywords: Center for Marine Environmental Sciences; ECOMOUND; Environmental controls on mound formation along the european margin; GeoB6718-2; GeoB6728-1; GeoB6729-1; GeoB6730-1; Gravity corer (Kiel type); MARUM; Porcupine Seabight; POS265; POS478-2; POS488-1; POS489-1; POS490-1; Poseidon; SL
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...