ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (1,598)
  • Hindawi  (1,598)
  • 2015-2019  (1,598)
  • Architecture, Civil Engineering, Surveying  (1,598)
Collection
  • Books
  • Articles  (1,598)
Years
Year
Journal
  • 1
    Publication Date: 2019-12-31
    Description: Soil erosion control dams are widely used as part of measures to reduce damage caused by debris flow all over the world. Engineering considerations are needed for proper design of erosion control dams, but in the Republic of Korea, the impact force of debris flow is not fully reflected in the current design criteria of the dam. Against this backdrop, this study was conducted to estimate the impact force of debris flow for the practical purpose of designing erosion control dam. Simulated flume experiments were performed to develop the relationship to estimate the flow velocity as well as the impact force of debris flow. Experimental results showed that increases both in sediment mixture volume and flume slope gradient led to an increase in flow velocity. Especially, it was found that as clay content increased gradually, the flume slope gradient had greater impact on the increase of flow velocity. Also, it was proved that the impact force of debris flow was well fitted to the hydrodynamic model as it showed linear correlation with the flow velocity. Then, the debris-flow velocity model was established based on the factor related to the debris-flow velocity. Finally, the dynamic model to estimate the impact force of debris flow was introduced utilizing correlations between the established debris-flow velocity model and Froude number. Both models which were developed with using statistically significant watershed characteristics succeeded in explaining the experiment results in a more accurate way compared to existing models. Therefore, it is highly expected that these models can be fully utilized to estimate impact force of debris flow which will be required to design erosion control dams in practical use through overcoming their identified limitations.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-31
    Description: The water-blocking properties of the clay layer at the bottom of the Cenozoic overburden in China are an important factor influencing the safety of thin bedrock coal seam mining. Clay has remolding properties that are unlike the nonreversible characteristics of cracks in brittle rock, and failure cracks in clay can reclose or continue to expand under the influence of different external factors. In this work, the soil layer on top of thin bedrock is the research object, and the influences of the particle composition, water content, soil layer thickness, and crack width on the crack development-closure state of soil layer are analyzed by the orthogonal test method. Visual analysis shows that the order of influence of each factor on the stability of soil layer is the crack width, particle composition, soil layer thickness, and water content. The stability of soil layer decreases with increasing crack width and sand content and decreasing soil layer thickness; in addition, soil layer stability decreases first and then increases with increasing water content. Further variance analysis shows that the crack width and particle composition are key factors that impact the stability of soil layer and that the soil layer thickness has some influence, while the water content has little effect on the stability of soil layer. In addition, the crack will reclose when the sand content in soil is less than 50% and the crack width is less than or equal to 1.0 mm, and the soil layer is prone to further failure when the sand content in soil is more than 50% and the crack width is greater than or equal to 3.0 mm; when the soil layer thickness is 15.0 cm, its stability is better than when the soil layer thickness is 10.0 cm or 5.0 cm.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-30
    Description: Isolated bridges are commonly designed in the near-fault region to balance excessive displacement and seismic force. Optimal intensity measures (IMs) of probabilistic seismic demand models for isolated bridges subjected to pulse-like ground motions are identified in this study. Four typical isolated girder bridge types with varied pier height (from 4 m to 20 m) are employed to conduct the nonlinear time history analysis. Totally seven structure-independent IMs are considered and compared. Critical engineering demand parameters (EDPs), namely, pier ductility demands and bearing deformation along the longitudinal and transverse directions, are recorded during the process. In general, PGV tends to be the optimal IM for isolated bridges under pulse-like ground motions based on practicality, efficiency, proficiency, and sufficiency criterions. The results can offer effective guidance for the optimal intensity measure selection of the probabilistic seismic demand models (PSDMs) of isolated bridges under pulse-like ground motions.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-28
    Description: Chaos theory is advantageous in achieving a deeper understanding of the nonlinearity and randomness of concrete behavior. In this study, the experimental data of concrete under compression were examined and discussed using Lyapunov exponent. According to the value of the Lyapunov exponent, which was larger than 0, it could be quantitatively demonstrated that measured and fitted data exhibited chaotic features. Besides, the mechanical behavior of concrete could be predicted by deducing its evolution equation. Furthermore, the evolution and trends of the Lyapunov exponent indicated that the series with human intervention showed a stronger chaotic property, which led to the result that this kind of series might be more difficult to predict.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-28
    Description: Rubberized concrete (RC) has attracted more attention these years as it is an economical and environmental-friendly construction material. Normally, the uniaxial compressive strength (UCS) of RC needs to be evaluated before application. In this study, an evolutionary random forest model (BRF) combining random forest (RF) and beetle antennae search (BAS) algorithms was proposed, which can be used for establishing the relationship between UCS of RC and its key variables. A total number of 138 cases were collected from the literature to develop and validate the BRF model. The results showed that the BAS can tune the RF effectively, and therefore, the hyperparameters of RF were obtained. The proposed BRF model can accurately predict the UCS of RC with a high correlation coefficient (0.96). Furthermore, the variable importance was determined, and the results showed that the age of RC is the most significant variable, followed by water-cement ratio, fine rubber aggregate, coarse rubber aggregate, and coarse aggregate. This study provides a new method to access the strength of RC and can efficiently guide the design of RC in practice.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-27
    Description: This study described the results of experiments comparing the cavity scales obtained from the GPR exploration with the direct excavation of the identified cavity scales. The first experiment was carried out on the actual roadway, and the additional experiment was carried out on the mock-up site to prevent the cavity collapse under the ground. It was confirmed that the soil depth of the predicted cavity and the identified cavity was similar, but the predicted cavity scales by GPR exploration overestimated the longitudinal and cross-sectional widths compared with the identified cavity scales. Based on the correlation between the cavity scales predicted by GPR exploration and the cavity scales identified in the mock-up test, an empirical formula for estimating the cavity scales was proposed.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-26
    Description: In this paper, a new type of buckling-restrained brace characterized by a variable cross-section core (BRB-VCC) is proposed and investigated. The practical design equations of the BRB-VCC are derived based on mechanical and mathematical theories. Six specimens are designed and tested to clarify the mechanical behaviours of the BRB-VCC and to validate the reliability of the proposed equations. The test results show that (1) none of the specimens buckle under compression, as expected, and their ductilities and energy dissipation capacities are satisfactory; (2) the derived formulas are reliable and can be conveniently used in engineering practice; and (3) the yielding displacement of the BRB-VCC is approximately 70% that of the traditional TJ-1 buckling-restrained brace (BRB-TJ-1), which may yield earlier than the BRB-TJ-1 in concrete structures under the action of an earthquake.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-24
    Description: A new kind of vibration screening material, Duxseal, with a high damping ratio is proposed to be used as an active vibration barrier in the free field. To investigate the influence of width, thickness, and embedded depth of using Duxseal on vibration reduction, numerical studies are performed using a three-dimensional (3D) semianalytical boundary element method (BEM) combined with a thin-layer method (TLM). The isolation effectiveness of Duxseal in ground vibration is also compared with the traditional wave impeding block (WIB). The numerical results show that Duxseal performed exceedingly well in screening ground vibrations in the free field. The effectiveness of the vibration isolation increases with the increase in the width, thickness, and embedded depth of the Duxseal material, within a certain range, under harmonic vertical excitation. In addition, Duxseal is much more effective for isolating ground vibration than the traditional WIB. The performance of Duxseal in isolating ground vibration is relatively stable along the distance away from the vibration source, while the amplitude attenuation ratio bounces upward when the distance away from the vibration source increases for the WIB isolation system.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-23
    Description: Energy conservation is an emerging global issue for sustainable infrastructure development. The building sector energy demand accounts for approximately 34% of the world’s energy demand, and artificial lighting consumes around 19% of the total delivered electricity globally. Developing a new kind of building material that can reduce the demand for artificial lighting energy is vital. This research attempts to address such issues through the development of translucent concrete façade using locally available materials that can be used as energy-saving building material. Bulk density, compressive strength, and flexural strength of translucent concrete containing 2%, 4%, and 6% volume ratios of plastic optical fibers (POF) were studied. Moreover, the flexural toughness of translucent concrete façade panels integrating 6% volume ratio of POF was also investigated. The experimental results showed that using up to 6% volume ratio of plastic optical fibers had no adverse effect on the bulk density of translucent concrete. Translucent concrete specimens exhibited relatively lower compressive and flexural strengths compared to the reference concrete. However, it was evidently observed that the compressive strength of translucent concrete increased with increasing the volume ratio of POF. The flexural strength of translucent concrete was observed to decline with increase in the volume ratio of POF. Results demonstrated that translucent concrete panels have better flexural toughness, ductility, and energy absorption capacity than the reference concrete panel. The energy-saving, environmental conservation, and aesthetic and structural performance improvements stemming from the application of translucent concrete façade panel as architectural wall would foster the development of green and resilient buildings as well as contribute to sustainable construction.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-23
    Description: Existing component separation methods fail to consider the complex nonlinear relationship between dam effect quantities and environmental variables. In this study, a novel nonlinear component separation method for the effect quantities is proposed by combining kernel partial least squares (KPLS) and pseudosamples. By this method, a nonlinear monitoring model is established based on KPLS, and the complicated nonlinear relationship between the effect quantities and environmental variables can be determined accurately through the model. Furthermore, special pseudosamples are constructed to separate independent components and coupling influence components of environmental factors from the KPLS model. These methods have been applied into a super-high arch dam, and the separated displacement components conform to the general deformation law. The presented results indicate that it is more reliable than traditional multiple linear regression models.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...