ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Quantum optics, physics of lasers, nonlinear optics, classical optics  (622)
  • Chemical Engineering
  • Meteorology and Climatology
  • 2010-2014  (901)
  • 2005-2009
  • 2014  (901)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-29
    Description: Welcome to the Atmospheric Research 2013 Atmospheric Research Highlights report. This report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2013.This report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres (610AT), Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-2014-217517 , GSFC-E-DAA-TN14927
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-27
    Description: The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN22995 , Journal of Applied Meteorology and Climatology; 53; 7; 1844-1857
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-26
    Description: Imaging of falling objects is described. Multiple images of a falling object can be captured substantially simultaneously using multiple cameras located at multiple angles around the falling object. An epipolar geometry of the captured images can be determined. The images can be rectified to parallelize epipolar lines of the epipolar geometry. Correspondence points between the images can be identified. At least a portion of the falling object can be digitally reconstructed using the identified correspondence points to create a digital reconstruction.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-24
    Description: For the past two years, the GOESR Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Shortterm Prediction Research and Transition (SPoRT) Center has used this opportunity to support the GOESR Proving Ground by expanding SPoRT's total lightning collaborations. In 2012, this expanded the evaluation of SPoRT's pseudogeostationary lightning mapper product to the Aviation Weather Center and Storm Prediction Center. This year, SPoRT has collaborated with the Colorado Lightning Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in realtime. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and lightning safety, and formal evaluations to take place in the spring of 2014.
    Keywords: Meteorology and Climatology
    Type: M13-2859 , American Meteorological Society (AMS) Annual Fall Meeting (2014); Feb 02, 2014 - Feb 06, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-14
    Description: We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17731
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN15269 , 2014 Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team Meeting; Apr 29, 2014 - May 01, 2014; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.
    Keywords: Meteorology and Climatology
    Type: GSC-16075-1 , NASA Tech Briefs, January 2014; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.
    Keywords: Meteorology and Climatology
    Type: Scientific Challenges of Thermosphere-Ionosphere Forecasting Technical Interchange Meeting; Oct 21, 2014 - Oct 23, 2014; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: Review of magnetosphere-ionosphere-thermosphere system modeling of co-rotating interaction regions high-speed streams.
    Keywords: Meteorology and Climatology
    Type: Scientific Challenges of Thermosphere-Ionosphere Forecasting Technical Interchange Meeting; Oct 21, 2014 - Oct 23, 2014; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...