ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (8)
  • Dehalococcoides
  • bioremediation
  • Springer  (8)
  • Cambridge University Press
  • Nature Publishing Group
  • Periodicals Archive Online (PAO)
  • Public Library of Science
  • Springer Nature
  • Taylor & Francis
  • 2020-2024
  • 2005-2009  (2)
  • 2000-2004  (6)
  • 1945-1949
  • 2006  (2)
  • 2000  (6)
  • Biologie  (8)
  • Werkstoffwissenschaften, Fertigungsverfahren, Fertigung  (1)
  • Philosophie
  • Wirtschaftswissenschaften
Sammlung
  • Artikel  (8)
Schlagwörter
Verlag/Herausgeber
  • Springer  (8)
  • Cambridge University Press
  • Nature Publishing Group
  • Periodicals Archive Online (PAO)
  • Public Library of Science
  • +
Erscheinungszeitraum
  • 2020-2024
  • 2005-2009  (2)
  • 2000-2004  (6)
  • 1945-1949
Jahr
  • 2006  (2)
  • 2000  (6)
  • 2003  (1)
Thema
  • 1
    ISSN: 1572-9729
    Schlagwort(e): bioremediation ; Dehalococcoides ; dechlorination ; microcosm ; tetrachloroethane ; trichloroethene
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Energietechnik , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Bioscience reports 20 (2000), S. 239-258 
    ISSN: 1573-4935
    Schlagwort(e): heavy metals ; phytoremediation ; bioremediation ; bioavailability ; chemical availability ; soil microorganisms ; plant-microbe interactions
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract In this review, chemical and biological parameters are discussed thatstrongly influence the speciation of heavy metals, their availability tobiological systems and, consequently, the possibilities to usebioremediation as a cleanup tool for heavy metal polluted sites. In orderto assess heavy metal availability, a need exists for rapid, cost-effectivesystems that reliably predict this parameter and, based on this, thefeasibility of using biological remediation techniques for site managementand restoration. Special attention is paid to phytoremediation as anemerging technology for stabilization and remediation of heavy metalpollution. In order to improve phytoremediation of heavy metal pollutedsites, several important points relevant to the process have to beelucidated. These include the speciation and bioavailability of the heavymetals in the soil determined by many chemical and biological parameters,the role of plant-associated soil microorganisms and fungi inphytoremediation, and the plants. Several options are described how plant-associated soil microorganisms canbe used to improve heavy metal phytoremediation.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Biodegradation 11 (2000), S. 385-389 
    ISSN: 1572-9729
    Schlagwort(e): bioremediation ; hydrocarbon-degrading bacteria ; indigenous microflora ; oil ; Rhodococcus
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Energietechnik , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract This paper summarises the experience accumulated duringthe field application of biopreparation `Rhoder' (solely or in a combinationwith preliminary mechanical collection of free oil) for remediation of oil polluted aquatic systems and soils in the Moscow region and Western Siberia during 1994–1999.It was demonstrated that `Rhoder' had a very high efficiency (〉99%) for bioremediation of the open aquatic surfaces (100 m2 bay of the River Chernaya, two 5,000 m2 lakes in Vyngayakha) at initial level of oil pollution of 0.4–19.1 g/l. During remediation of the wetland (2,000 m2) in Urai (initial level of oil pollution of 10.5 g/l), a preliminary mechanical collection of oil was applied (75% removal) followed by a triple treatment with `Rhoder'. It resulted in an overall treatment efficiency of 94%. Relatively inferior results of bioremediation of the 10,000 m2 wetland in Vyngayakha (65% removal) and the 1,000 m2 marshy peat soil in Nizhnevartovsk (19% removal) can be attributed to the very high initial level of oil pollution (24.3 g/l and 〉750 g/g dry matter, respectively) aggravated by the fact that it was impossible to apply a preliminary mechanical collection of oil on these sites. A possible strategy for remediation of such heavily polluted sitesis discussed.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1572-9729
    Schlagwort(e): bioremediation ; composting ; ecotoxicity ; oil sludge
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Energietechnik , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250–300 g kg−1), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1572-9729
    Schlagwort(e): aerobic degradation ; bioaugmentation ; bioreactors ; bioremediation ; MTBE ; natural attenuation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Energietechnik , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract The addition of methyl tert-butyl ether (MTBE) to gasoline has resulted in public uncertainty regarding the continued reliance on biological processes for gasoline remediation. Despite this concern, researchers have shown that MTBE can be effectively degraded in the laboratory under aerobic conditions using pure and mixed cultures with half-lives ranging from 0.04 to 29 days. Ex-situ aerobic fixed-film and aerobic suspended growth bioreactor studies have demonstrated decreases in MTBE concentrations of 83% and 96% with hydraulic residence times of 0.3 hrs and 3 days, respectively. In microcosm and field studies, aerobic biodegradation half-lives range from 2 to 693 days. These half-lives have been shown to decrease with increasing dissolved oxygen concentrations and, in some cases, with the addition of exogenous MTBE-degraders. MTBE concentrations have also been observed to decrease under anaerobic conditions; however, these rates are not as well defined. Several detailed field case studies describing the use of ex-situ reactors, natural attenuation, and bioaugmentation are presented in this paper and demonstrate the potential for successful remediation of MTBE-contaminated aquifers. In conclusion, a substantial amount of literature is available which demonstratesthat the in-situ biodegradation of MTBE is contingent on achieving aerobic conditions in the contaminated aquifer.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Biodegradation 11 (2000), S. 107-116 
    ISSN: 1572-9729
    Schlagwort(e): bioremediation ; Fe(III) reduction ; methanogenesis ; subsurfce microbiology ; sulfate reduciton
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Energietechnik , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Although many studies have indicated that benzene persists under anaerobic conditions in petroleum-contaminated environments, it has recently been documented that benzene can be anaerobically oxidized with most commonlyconsidered electron acceptors for anaerobic respiration. These include: Fe(III),sulfate, nitrate, and possibly humic substances. Benzene can also be convertedto methane and carbon dioxide under methanogenic conditions. There is evidencethat benzene can be degraded under in situ conditions in petroleum-contaminatedaquifers in which either Fe(III) reduction or methane production is the predominant terminal electron-accepting process. Furthermore, evidence from laboratory studies suggests that benzene may be anaerobically degraded in petroleum-contaminated marine sediments under sulfate-reducing conditions. Laboratory studies have suggested that within the Fe(III) reduction zone of petroleum-contaminated aquifers, benzene degradation can be stimulated with the addition of synthetic chelators which make Fe(III) more available for microbial reduction. The addition of humic substances and other compounds that contain quinone moieties can also stimulate anaerobic benzene degradation in laboratory incubations of Fe(III)-reducing aquifer sediments by providing an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. Anaerobic benzene degradation in aquifer sediments can be stimulated with the addition of sulfate, but in some instances an inoculum of benzene-oxidizing,sulfate-reducing microorganisms must also be added. In a field trial, sulfate addition to the methanogenic zone of a petroleum-contaminated aquifer stimulated the growth and activity of sulfate-reducing microorganisms and enhanced benzene removal. Molecular phylogenetic studies have provided indications of what microorganisms might be involved in anaerobic benzene degradation in aquifers. The major factor limiting further understanding of anaerobic benzene degradation is the lack of a pure culture of an organism capable of anaerobic benzene degradation.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1572-9729
    Schlagwort(e): aerobic ; bioremediation ; biodegradation ; gasoline ; MTBE ; TBA
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Energietechnik , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract With the current practice of amending gasoline with up to 15% by volume MTBE, the contamination of groundwater by MTBE has become widespread. As a result, the bioremediation of MTBE-impacted aquifers has become an active area of research. A review of the current literature on the aerobic biodegradation of MTBE reveals that a number of cultures from diverse environments can either partially degrade or completely mineralize MTBE. MTBE is either utilized as a sole carbon and energy source or is degraded cometabolically by cultures grown on alkanes. Reported degradation rates range from 0.3 to 50 mg MTBE/g cells/h while growth rates (0.01–0.05 g MTBE/g cells/d) and cellular yields (0.1–0.2 g cells/g MTBE) are generally low. Studies on the mechanisms of MTBE degradation indicate that a monooxygenase enzyme cleaves the ether bond yielding tert-butyl alcohol (TBA) and formaldehyde as the dominant detectable intermediates. TBA is further degraded to 2-methyl-2-hydroxy-1-propanol, 2-hydroxyisobutyric acid, 2-propanol, acetone, hydroxyacteone and eventually, carbon dioxide. The majority of these intermediates are also common to mammalian MTBE metabolism. Laboratory studies on the degradation of MTBE in the presence of gasoline aromatics reveal that while degradation rates of other gasoline components are generally not inhibited by MTBE, MTBE degradation could be inhibited in the presence of more easily biodegradable compounds. Controlled field studies are clearly needed to elucidate MTBE degradation potential in co-contaminant plumes. Based on the reviewed studies, it is likely that a bioremediation strategy involving direct metabolism, cometabolism, bioaugmentation, or some combination thereof, could be applied as a feasible and cost-effective treatment method for MTBE contamination.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Springer
    World journal of microbiology and biotechnology 16 (2000), S. 231-235 
    ISSN: 1573-0972
    Schlagwort(e): Bacterial community ; bioremediation ; PCR-SSCP
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Abstract The extent of shift in soil bacterial community structure during bioremediational treatments was investigated by PCR-single-strand-conformation polymorphism (SSCP) analysis, which was followed by computer-assisted cluster analysis of the community fingerprints. While biostimulation as well as bioaugmentation enhanced the degradation of phenanthrene in soil, both bioremediational treatments caused shifts in the bacterial community structure. Drastic changes were observed in the initial phase of bioaugmentation. Our results demonstrate that computer-assisted fingerprint analysis is readily applicable to the study for the comparative analysis of microbial community structure using molecular profiling techniques.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...