ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9,532)
  • Oxford University Press  (9,532)
  • Periodicals Archive Online (PAO)
  • Molecular Biology and Evolution  (1,655)
  • 6974
  • 1
    Publication Date: 2021-10-28
    Description: Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multi-species subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southwards from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, i.e., elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an “Out-of-Italy” expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian and Balkan peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: The long-term evolutionary impacts of whole genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologues) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnologue sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent ‘explosion’ of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnologue divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial ‘wave’ of rediploidization in the late Cretaceous (85-106 Mya). This was followed by a period of relative genomic stasis lasting 17-39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnologue divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: Structural variants have a considerable impact on human genomic diversity. However, their evolutionary history remains mostly unexplored. Here, we developed a new method to identify potentially adaptive structural variants based on a similarity-based analysis that incorporates genotype frequency data from 26 populations simultaneously. Using this method, we analyzed 57,629 structural variants and identified 576 structural variants that show unusual population differentiation. Of these putatively adaptive structural variants, we further showed that 24 variants are multiallelic and overlap with coding sequences, and 20 variants are significantly associated with GWAS traits. Closer inspection of the haplotypic variation associated with these putatively adaptive and functional structural variants reveals deviations from neutral expectations due to (i) population differentiation of rapidly evolving multi-allelic variants, (ii) incomplete sweeps, and (iii) recent population-specific negative selection. Overall, our study provides new methodological insights, documents hundreds of putatively adaptive variants, and introduces evolutionary models that may better explain the complex evolution of structural variants.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: The role of uric acid during primate evolution has remained elusive ever since it was discovered over 100 years ago that humans have unusually high levels of the small molecule in our serum. It has been difficult to generate a neutral or adaptive explanation in part because the uricase enzyme evolved to become a pseudogene in apes thus masking typical signals of sequence evolution. Adding to the difficulty is a lack of clarity on the functional role of uric acid in apes. One popular hypothesis proposes that uric acid is a potent antioxidant that increased in concentration to compensate for the lack of vitamin C synthesis in primate species ∼65 million years ago (Mya). Here, we have expanded on our previous work with resurrected ancient uricase proteins to better resolve the reshaping of uricase enzymatic activity prior to ape evolution. Our results suggest that the pivotal death-knell to uricase activity occurred between 20-30 Mya despite small sequential modifications to its catalytic efficiency for the tens of millions of years since primates lost their ability to synthesize vitamin C, and thus the two appear uncorrelated. We also use this opportunity to demonstrate how molecular evolution can contribute to biomedicine by presenting ancient uricases to human immune cells that assay for innate reactivity against foreign antigens. A highly stable and highly catalytic ancient uricase is shown to elicit a lower immune response in more human haplotypes than other uricases currently in therapeutic development.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-25
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-25
    Description: It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid and nucleus). Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the dataset size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid dataset provided higher statistical support for the ochrophyte radiation than the larger nucleus dataset. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear dataset. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of datasets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-25
    Description: We use first principles of population genetics to model the evolution of proteins under persistent positive selection (PPS). PPS may occur when organisms are subjected to persistent environmental change, during adaptive radiations, or in host-pathogen interactions. Our mutation-selection model indicates protein evolution under PPS is an irreversible Markov process, and thus proteins under PPS show a strongly asymmetrical distribution of selection coefficients among amino acid substitutions. Our model shows the criteria ω 〉 1 (where ω is the ratio of non-synonymous over synonymous codon substitution rates) to detect positive selection is conservative and indeed arbitrary, because in real proteins many mutations are highly deleterious and are removed by selection even at positively-selected sites. We use a penalized-likelihood implementation of the PPS model to successfully detect PPS in plant RuBisCO and influenza HA proteins. By directly estimating selection coefficients at protein sites, our inference procedure bypasses the need for using ω as a surrogate measure of selection and improves our ability to detect molecular adaptation in proteins.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-25
    Description: Parallel evolution of ecotypes occurs when selection independently drives the evolution of similar traits across similar environments. The multiple origins of ecotypes are often inferred based on a phylogeny that clusters populations according to geographic location and not by the environment they occupy. However, the use of phylogenies to infer parallel evolution in closely related populations is problematic because gene flow and incomplete lineage sorting can uncouple the genetic structure at neutral markers from the colonization history of populations. Here, we demonstrate multiple origins within ecotypes of an Australian wildflower, Senecio lautus. We observed strong genetic structure as well as phylogenetic clustering by geography and show that this is unlikely due to gene flow between parapatric ecotypes, which was surprisingly low. We further confirm this analytically by demonstrating that phylogenetic distortion due to gene flow often requires higher levels of migration than those observed in S. lautus. Our results imply that selection can repeatedly create similar phenotypes despite the perceived homogenizing effects of gene flow.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-18
    Description: Comparative phylogenetic studies offer a powerful approach to study the evolution of complex traits. While much effort has been devoted to the evolution of the genome and to organismal phenotypes, until now relatively little work has been done on the evolution of the metabolome, despite the fact that it is composed of the basic structural and functional building blocks of all organisms. Here we explore variation in metabolite levels across 50 million years of evolution in the genus Drosophila, employing a common garden design to measure the metabolome within and among 11 species of Drosophila. We find that both sex and age have dramatic and evolutionarily conserved effects on the metabolome. We also find substantial evidence that many metabolite pairs covary after phylogenetic correction, and that such metabolome coevolution is modular. Some of these modules are enriched for specific biochemical pathways and show different evolutionary trajectories, with some showing signs of stabilizing selection. Both observations suggest that functional relationships may ultimately cause such modularity. These coevolutionary patterns also differ between sexes and are affected by age. We explore the relevance of modular evolution to fitness by associating modules with lifespan variation measured in the same common garden. We find several modules associated with lifespan, particularly in the metabolome of older flies. Oxaloacetate levels in older females appear to coevolve with lifespan, and a lifespan-associated module in older females suggests that metabolic associations could underlie 50 million years of lifespan evolution.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...