ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (4,122)
  • 2015-2019  (4,122)
  • 2018  (4,122)
  • Remote Sensing  (2,042)
  • 124526
  • Architecture, Civil Engineering, Surveying  (4,122)
  • 1
    Publication Date: 2018-12-31
    Description: High-throughput phenotyping technologies have become an increasingly important topic of crop science in recent years. Various sensors and data acquisition approaches have been applied to acquire the phenotyping traits. It is quite confusing for crop phenotyping researchers to determine an appropriate way for their application. In this study, three representative three-dimensional (3D) data acquisition approaches, including 3D laser scanning, multi-view stereo (MVS) reconstruction, and 3D digitizing, were evaluated for maize plant phenotyping in multi growth stages. Phenotyping traits accuracy, post-processing difficulty, device cost, data acquisition efficiency, and automation were considered during the evaluation process. 3D scanning provided satisfactory point clouds for medium and high maize plants with acceptable efficiency, while the results were not satisfactory for small maize plants. The equipment used in 3D scanning is expensive, but is highly automatic. MVS reconstruction provided satisfactory point clouds for small and medium plants, and point deviations were observed in upper parts of higher plants. MVS data acquisition, using low-cost cameras, exhibited the highest efficiency among the three evaluated approaches. The one-by-one pipeline data acquisition pattern allows the use of MVS high-throughput in further phenotyping platforms. Undoubtedly, enhancement of point cloud processing technologies is required to improve the extracted phenotyping traits accuracy for both 3D scanning and MVS reconstruction. Finally, 3D digitizing was time-consuming and labor intensive. However, it does not depend on any post-processing algorithms to extract phenotyping parameters and reliable phenotyping traits could be derived. The promising accuracy of 3D digitizing is a better verification choice for other 3D phenotyping approaches. Our study provides clear reference about phenotyping data acquisition of maize plants, especially for the affordable and portable field phenotyping platforms to be developed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-31
    Description: The European Parliament and The Council of the European Union have established the Water Framework Directive (2000/60/EC) for all European Union member states to achieve, at least, “good” ecological status of all water bodies larger than 50 hectares in Europe. The MultiSpectral Instrument onboard European Space Agency satellite Sentinel-2 has suitable 10, 20, 60 m spatial resolution to monitor most of the Estonian lakes as required by the Water Framework Directive. The study aims to analyze the suitability of Sentinel-2 MultiSpectral Instrument data to monitor water quality in inland waters. This consists of testing various atmospheric correction processors to remove the influence of atmosphere and comparing and developing chlorophyll a algorithms to estimate the ecological status of water in Estonian lakes. This study shows that the Sentinel-2 MultiSpectral Instrument is suitable for estimating chlorophyll a in water bodies and tracking the spatial and temporal dynamics in the lakes. However, atmospheric corrections are sensitive to surrounding land and often fail in narrow and small lakes. Due to that, deriving satellite-based chlorophyll a is not possible in every case, but initial results show the Sentinel-2 MultiSpectral Instrument could still provide complementary information to in situ data to support Water Framework Directive monitoring requirements.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-30
    Description: Floods are considered one of the most disastrous hazards all over the world and cause serious casualties and property damage. Therefore, the assessment and regionalization of flood disasters are becoming increasingly important and urgent. To predict the probability of a flood, an essential step is to map flood susceptibility. The main objective of this work is to investigate the use a novel hybrid technique by integrating multi-criteria decision analysis and geographic information system to evaluate flood susceptibility mapping (FSM), which is constructed by ensemble of decision making trial and evaluation laboratory (DEMATEL), analytic network process, weighted linear combinations (WLC) and interval rough numbers (IRN) techniques in the case study at Shangyou County, China. Specifically, we improve the DEMATEL method by applying IRN to determine connections in the network structure based on criteria and to accept imprecisions during collective decision making. The application of IRN can eliminate the necessity of additional information to define uncertain number intervals. Therefore, the quality of the existing data during collective decision making and experts’ perceptions that are expressed through an aggregation matrix can be retained. In this work, eleven conditioning factors associated with flooding were considered and historical flood locations were randomly divided into the training (70% of the total) and validation (30%) sets. The flood susceptibility map validates a satisfactory consistency between the flood-susceptible areas and the spatial distribution of the previous flood events. The accuracy of the map was evaluated by using objective measures of receiver operating characteristic (ROC) curve and area under the curve (AUC). The AUC values of the proposed method coupling with the WLC fuzzy technique for aggregation and flood susceptibility index are 0.988 and 0.964, respectively, which proves that the WLC fuzzy method is more effective for FSM in the study area. The proposed method can be helpful in predicting accurate flood occurrence locations with similar geographic environments and can be effectively used for flood management and prevention.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-30
    Description: Earthquakes are reported to be preceded by anomalous increases in satellite-recorded thermal emissions, but published results are often contradicting and/or limited to short periods and areas around the earthquake. We apply a methodology that allows to detect subtle, localized spatio-temporal fluctuations in hyper-temporal, geostationary-based land surface temperature (LST) data. We study 10 areas worldwide, covering 20 large (Mw 〉 5.5) and shallow (
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-29
    Description: The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal, seasonal, and inter-annual) variations of SUHI are contributed by a variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, and climate. However, applications of SUHI research are largely impeded by a series of data and methodological limitations. Lastly, we propose key potential directions and opportunities for future efforts. Besides improving the quality and quantity of LST data, more attention should be focused on understudied regions/cities, methods to examine SUHI intensity, inter-annual variability and long-term trends of SUHI, scaling issues of SUHI, the relationship between surface and subsurface UHIs, and the integration of remote sensing with field observations and numeric modeling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-12-29
    Description: Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-29
    Description: The authors wish to make the following corrections to this paper [...]
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-12-29
    Description: Due to the availability of observations and the effectiveness of bias correction, it is still a challenge to assimilate data from the polar orbit satellites into a limited-area and frequently updated model. This study assessed the initial application of satellite radiance data from multiple platforms in the Rapid-refresh Multi-scale Analysis and Prediction System (RMAPS). Satellite radiance data from the advanced microwave sounding unit-A (AMSU-A) and microwave humidity sounding (MHS) were used. Two 12-day retrospective runs were conducted to evaluate the impact of assimilating satellite radiance data on 0–24 h forecasts using RMAPS. The forecasts, initialized from analyses with and without satellite radiance data, were verified against observations. The results showed that satellite radiance data from AMSU-A and MHS had a positive impact on the initial conditions and the forecasts of RMAPS, even over the relatively data-rich area of North China. Compared to the control run that only assimilated conventional observations, an improvement of about 36.8% can be obtained for the temperature bias between 300 hPa and 850 hPa and 0.65% for the average RMSE. Satellite radiance observations from 1200 UTC contribute relatively significantly (77.8%) to the bias improvement of the initial temperature field. For the wind at 10 m, the bias and root-mean-square error (RMSE) both had a reduction for the 0–12 h forecast range. An improvement can be also found for the skill score of the 3-h accumulated rainfall below 10.0 mm in the first 12 h of the forecast range. There was a slight improvement in the skill score of the 6-h accumulated rainfall above 50 mm over North China, with a 20.7% improvement for the first 12 h of the forecast. The inclusion of satellite radiance observations was found to be beneficial for the initial temperature, which consequently improved the forecast skill of the 0–12 h range in the RMAPS.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-12-29
    Description: High spatial resolution Earth observation imagery is considered desirable for many scientific and commercial applications. Given repeat multi-angle imagery, an imaging instrument with a specified spatial resolution, we can use image processing and deep learning techniques to enhance the spatial resolution. In this paper, we introduce the University College London (UCL) MAGiGAN super-resolution restoration (SRR) system based on multi-angle feature restoration and deep SRR networks. We explore the application of MAGiGAN SRR to a set of 9 MISR red band images (275 m) to produce up to a factor of 3.75 times resolution enhancement. We show SRR results over four different test sites containing different types of image content including urban and rural targets, sea ice and a cloud field. Different image metrics are introduced to assess the overall SRR performance, and these are employed to compare the SRR results with the original MISR input images and higher resolution Landsat images, where available. Significant resolution improvement over various types of image content is demonstrated and the potential of SRR for different scientific application is discussed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-12-29
    Description: The predicted parts of ultra-rapid orbits are important for (near) real-time Global Navigation Satellite System (GNSS) precise applications; and there is little research on GPS/GLONASS/BDS/Galileo/QZSS five-system ultra-rapid precise orbit determination; based on the one-step method and double-difference observation model. However; the successful development of a software platform for solving five-system ultra-rapid orbits is the basis of determining and analyzing these orbits. Besides this; the different observation models and processing strategies facilitate to validate the reliability of the various ultra-rapid orbits. In this contribution; this paper derives the double-difference observation model of five-system ultra-rapid precise orbit determination; based on a one-step method; and embeds this method and model into Bernese v5.2; thereby forming a new prototype software platform. For validation purposes; 31 days of real tracking data; collected from 130 globally-distributed International GNSS Service (IGS) multi-GNSS Experiment (MGEX) stations; are used to determine a five-system ultra-rapid precise orbit. The performance of the software platform is evaluated by analysis of the orbit discontinuities at day boundaries and by comparing the consistency with the MGEX orbits from the Deutsches GeoForschungsZentrum (GFZ); between the results of this new prototype software platform and the ultra-rapid orbit provided by the International GNSS Monitoring and Assessment System (iGMAS) analysis center (AC) at the Institute of Geodesy and Geophysics (IGG). The test results show that the average standard deviations of orbit discontinuities in the three-dimension direction are 0.022; 0.031; 0.139; 0.064; 0.028; and 0.465 m for GPS; GLONASS; BDS Inclined Geosynchronous Orbit (IGSO); BDS Mid-Earth Orbit (MEO); Galileo; and QZSS satellites; respectively. In addition; the preliminary results of the new prototype software platform show that the consistency of this platform has been significantly improved compared to the software package of the IGGAC.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...