ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Bücher
  • Artikel  (17.598)
  • 2015-2019  (17.598)
  • 124526
  • 4914
  • 11
    Publikationsdatum: 2019-12-27
    Beschreibung: Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote sensing images. Hashing, as a method of retrieving images, has been widely applied to remote sensing image retrieval. In order to improve hashing performance, we develop a cohesion intensive deep hashing model for remote sensing image retrieval. The underlying architecture of our deep model is motivated by the state-of-the-art residual net. Residual nets aim at avoiding gradient vanishing and gradient explosion when the net reaches a certain depth. However, different from the residual net which outputs multiple class-labels, we present a residual hash net that is terminated by a Heaviside-like function for binarizing remote sensing images. In this scenario, the representational power of the residual net architecture is exploited to establish an end-to-end deep hashing model. The residual hash net is trained subject to a weighted loss strategy that intensifies the cohesiveness of image hash codes within one class. This effectively addresses the data imbalance problem normally arising in remote sensing image retrieval tasks. Furthermore, we adopted a gradualness optimization method for obtaining optimal model parameters in order to favor accurate binary codes with little quantization error. We conduct comparative experiments on large-scale remote sensing data sets such as UCMerced and AID. The experimental results validate the hypothesis that our method improves the performance of current remote sensing image retrieval.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2019-12-27
    Beschreibung: As the backbone and arteries of a comprehensive transportation network, highways play an important role in improving people’s living standards and promoting economic growth. However, globally, there is limited quantifiable data evaluating the highway traffic state, characteristics, and performance. From the 1960s to the present, remote sensing has been regarded as the most effective technology for long-term and large-scale monitoring of surface information. However, how to reflect the dynamic “flow” information of traffic with a static remote sensing image has always been a difficult problem that is hard to solve in the field. This study aims to construct a method of evaluating highway traffic prosperity using nighttime remote sensing. First, based on nighttime light data that indicate social and economic activities, a highway-oriented method was proposed to extract highway nighttime light data from 2015 annual nighttime light data of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite sensor (SNPP-VIIRS). Subsequently, Pearson correlation analysis was used to fit the relationship between freeway traffic flow volume and freeway nighttime light at the provincial level. The results showed that Pearson Correlation Coefficient of freeway nighttime light and freeway traffic flow volume for coach and truck are 0.905 and 0.731, respectively, which are higher than between freeway traffic flow volume for coach and truck and total nighttime light (0.593 and 0.516, respectively). A new index—Highway Nighttime Traffic Prosperity Index (HNTPI)—was proposed to evaluate highway traffic across China. The results showed that HNTPI has a strong correspondence with socio-economic parameters. The Pearson Correlation Coefficient of HNTPI and gross domestic product (GDP) per capita, consumption per capita, and population are 0.772, 0.895, and 0.968, respectively. There is a huge spatial heterogeneity in China nighttime traffic, the prosperity degree of highway traffic in developed coastal areas is obviously higher than that inland. The national general highway is the most prosperous highway at night and the national general highway nighttime prosperity of Shanghai reached 22.34%. This research provides basic data for the long-term monitoring and evaluation of regional traffic operation at night and research on the correlation between regional highway construction and the economy.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2019-12-27
    Beschreibung: The advent of multiple satellite systems capable of resolving smallholder agricultural plots raises possibilities for significant advances in measuring and understanding agricultural productivity in smallholder systems. However, since only imperfect yield data are typically available for model training and validation, assessing the accuracy of satellite-based estimates remains a central challenge. Leveraging a survey experiment in Mali, this study uses plot-level sorghum yield estimates, based on farmer reporting and crop cutting, to construct and evaluate estimates from three satellite-based sensors. Consistent with prior work, the analysis indicates low correlation between the ground-based yield measures (r = 0.33). Satellite greenness, as measured by the growing season peak value of the green chlorophyll vegetation index from Sentinel-2, correlates much more strongly with crop cut (r = 0.48) than with self-reported (r = 0.22) yields. Given the inevitable limitations of ground-based measures, the paper reports the results from the regressions of self-reported, crop cut, and (crop cut-calibrated) satellite sorghum yields. The regression covariates explain more than twice as much variation in calibrated satellite yields (R2 = 0.25) compared to self-reported or crop cut yields, suggesting that a satellite-based approach anchored in crop cuts can be used to track sorghum yields as well or perhaps better than traditional measures. Finally, the paper gauges the sensitivity of yield predictions to the use of Sentinel-2 versus higher-resolution imagery from Planetscope and DigitalGlobe. All three sensors exhibit similar performance, suggesting little gains from finer resolutions in this system.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2019-12-27
    Beschreibung: Submesoscale eddies play an important role in the energy transfer from the mesoscale down to the dissipative range, as well as in tracer transport. They carry inorganic matter, nutrients and biomass; in addition, they may act as pollutant conveyors. However, synoptic observations of these features need high resolution sampling, in both time and space, making their identification challenging. Therefore, HF coastal radar were and are successfully used to accurately identify, track and describe them. In this paper we tested two already existing algorithms for the automated detection of submesoscale eddies. We applied these algorithms to HF radar velocity fields measured by a network of three radar systems operating in the Gulf of Naples. Both methods showed shortcomings, due to the high non-geostrophy of the observed currents. For this reason we developed a third, novel algorithm that proved to be able to detect highly asymmetrical eddies, often not properly identified by the previous ones. We used the results of the application of this algorithm to estimate the eddy boundary profiles and the eddy spatial distribution.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2019-12-27
    Beschreibung: Typhoons can be serious natural disasters for the sustainability and development of society. The development of a typhoon usually involves a pre-existing weather disturbance, warm tropical oceans, and a large amount of moisture. This implies that a large variation in the atmospheric water vapor over the path of a typhoon can be used to study the characteristics of the typhoon. This is the reason that the variation in precipitable water vapor (PWV) is often used to capture the signature of a typhoon in meteorology. This study investigates the usability of real-time PWV retrieved from global navigation satellite systems (GNSS) for typhoons’ characterizations, and especially, the following aspects were investigated: (1) The correlation between PWV and atmospheric parameters including pressure, temperature, precipitation, and wind speed; (2) water vapor transportation during a typhoon period; and (3) the correlation between the movement of a typhoon and the transportation of water vapor. The case study selected for this research was Super Typhoon Mangkhut that occurred in mid-September 2018 in Hong Kong. The PWV time series were obtained from a conversion of GNSS-derived zenith total delays (ZTDs) using observations at 10 stations selected from the Hong Kong GNSS continuously operating reference stations (CORS) network, which are also located along the path of the typhoon. The Bernese GNSS Software (ver. 5.2) was used to obtain the ZTDs; and the root mean square (RMS) of the differences between the GNSS-ZTDs and International GNSS Service post-processed ZTDs time series was less than 8 mm. The RMS of the differences between the GNSS-PWVs (i.e., the ZTDs converted PWVs) and radiosonde-derived PWVs (RS-PWVs) time series was less than 2 mm. The changes in PWV reflect the variation in wind speed during the typhoon period to a certain degree, and their correlation coefficient was 0.76, meaning a significant positive correlation. In addition, a new approach was proposed to estimate the direction and speed of a typhoon’s movement using the time difference of PWV arrival at different sites. The direction and speed estimated agreed well with the ones published by the China Meteorological Administration. These results suggest that GNSS-derived PWV has a great potential for the monitoring and even prediction of typhoon events, especially for near real-time warnings.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2019-12-27
    Beschreibung: Diurnal variation of land surface temperature (LST) is essential for land surface energy and water balance at regional or global scale. Diurnal temperature cycle (DTC) model with least parameters and high accuracy is the key issue in estimating the spatial–temporal variation of DTC. The alpine meadow is the main land cover in the Tibetan Plateau (TP). However, few studies have been reported on the performance of different DTC models over alpine meadows in the TP. Four semi-empirical types of DTC models were used to generate nine 4-parameter (4-para) models by fixing some of free parameters. The performance of the nine 4-para DTC models were evaluated with four in situ and MODIS observations. All models except GOT09-dT-ts (dT means the temperature residual between T0 and T (t→∞); ts means the time when free attenuation begins) had higher correlation with in situ data (R2 〉 0.9), while the INA08-ts model performed best with NSE of 0.99 and RMSE of 2.04 K at all sites. The GOT09-ts-τ (τ is the total optical thickness), VAN06-ts-ω1 (ω1 means the half-width of the cosine term in the morning), and GOT01-ts models had better performance, followed by GOT09-dT-τ, GOT01-dT, and VAN06-ts-ω2 (ω2 means the half-width of the cosine term in the afternoon) models. All models had higher accuracy in summer than in other seasons, while poorer performance was produced in winter. The INA08-ts model showed best performance among all seasons. Models with fixing ts could produce higher accuracy results than that with fixing dT. The comparison of INA08-ts model driven by in situ and Moderate Resolution Imaging Spectroradiometer (MODIS) data indicated that the simulation accuracy mainly depended on the accuracy of MODIS LST. The daily maximum temperature generated by the nine models had high accuracy when compared with in situ data. The sensitivity analysis indicated that the INA08-dT and GOT09-dT-ts models were more sensitive to parameter dT, while all models were insensitive to parameter ts, and all models had weak relationship with parameters ω and τ. This study provides a reference for exploring suitable DTC model in the TP.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019-12-26
    Beschreibung: Compared to conventional laboratory testing methods, crop nitrogen estimation methods based on canopy spectral characteristics have advantages in terms of timeliness, cost, and practicality. A variety of rapid and non-destructive estimation methods based on the canopy spectrum have been developed on the scale of space, sky, and ground. In order to understand the differences in estimation accuracy and applicability of these methods, as well as for the convenience of users to select the suitable technology, models for estimation of nitrogen status of winter wheat were developed and compared for three methods: drone equipped with a multispectral camera, soil plant analysis development (SPAD) chlorophyll meter, and smartphone photography. Based on the correlations between observed nitrogen status in winter wheat and related vegetation indices, green normalized difference vegetation index (GNDVI) and visible atmospherically resistant index (VARI) were selected as the sensitive vegetation indices for the drone equipped with a multispectral camera and smartphone photography methods, respectively. The correlation coefficients between GNDVI, SPAD, and VARI were 0.92 ** and 0.89 **, and that between SPAD and VARI was 0.90 **, which indicated that three vegetation indices for these three estimation methods were significantly related to each other. The determination coefficients of the 0–90 cm soil nitrate nitrogen content estimation models for the drone equipped with a multispectral camera, SPAD, and smartphone photography methods were 0.63, 0.54, and 0.81, respectively. In the estimation accuracy evaluation, the method of smartphone photography had the smallest root mean square error (RMSE = 9.80 mg/kg). The accuracy of the smartphone photography method was slightly higher than the other two methods. Due to the limitations of these models, it was found that the crop nitrogen estimation methods based on canopy spectrum were not suitable for the crops under severe phosphate deficiency. In addition, in estimation of soil nitrate nitrogen content, there were saturation responses in the estimation indicators of the three methods. In order to introduce these three methods in the precise management of nitrogen fertilizer, it is necessary to further improve their estimation models.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019-12-26
    Beschreibung: Land cover mapping of intensive cropping areas facilitates an enhanced regional response to biosecurity threats and to natural disasters such as drought and flooding. Such maps also provide information for natural resource planning and analysis of the temporal and spatial trends in crop distribution and gross production. In this work, 10 meter resolution land cover maps were generated over a 6200 km 2 area of the Riverina region in New South Wales (NSW), Australia, with a focus on locating the most important perennial crops in the region. The maps discriminated between 12 classes, including nine perennial crop classes. A satellite image time series (SITS) of freely available Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery was used. A segmentation technique grouped spectrally similar adjacent pixels together, to enable object-based image analysis (OBIA). K-means unsupervised clustering was used to filter training points and classify some map areas, which improved supervised classification of the remaining areas. The support vector machine (SVM) supervised classifier with radial basis function (RBF) kernel gave the best results among several algorithms trialled. The accuracies of maps generated using several combinations of the multispectral and radar bands were compared to assess the relative value of each combination. An object-based post classification refinement step was developed, enabling optimization of the tradeoff between producers’ accuracy and users’ accuracy. Accuracy was assessed against randomly sampled segments, and the final map achieved an overall count-based accuracy of 84.8% and area-weighted accuracy of 90.9%. Producers’ accuracies for the perennial crop classes ranged from 78 to 100%, and users’ accuracies ranged from 63 to 100%. This work develops methods to generate detailed and large-scale maps that accurately discriminate between many perennial crops and can be updated frequently.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019-12-26
    Beschreibung: The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of the Earth’s radiation budget (ERB) and solar spectral irradiance (SSI) in the Herzberg continuum (200–242 nm) using high quantum efficiency ultraviolet and infrared sensors. This research and innovation mission has been initiated by the University of Versailles Saint-Quentin-en-Yvelines (UVSQ) with the support of the International Satellite Program in Research and Education (INSPIRE). The motivation of the UVSQ-SAT mission is to experiment miniaturized remote sensing sensors that could be used in the multi-point observation of Essential Climate Variables (ECV) by a small satellite constellation. UVSQ-SAT represents the first step in this ambitious satellite constellation project which is currently under development under the responsibility of the Laboratory Atmospheres, Environments, Space Observations (LATMOS), with the UVSQ-SAT CubeSat launch planned for 2020/2021. The UVSQ-SAT scientific payload consists of twelve miniaturized thermopile-based radiation sensors for monitoring incoming solar radiation and outgoing terrestrial radiation, four photodiodes that benefit from the intrinsic advantages of Ga 2 O 3 alloy-based sensors made by pulsed laser deposition for measuring solar UV spectral irradiance, and a new three-axis accelerometer/gyroscope/compass for satellite attitude estimation. We present here the scientific objectives of the UVSQ-SAT mission along the concepts and properties of the CubeSat platform and its payload. We also present the results of a numerical simulation study on the spatial reconstruction of the Earth’s radiation budget, on a geographical grid of 1 ° × 1 ° degree latitude-longitude, that could be achieved with UVSQ-SAT for different observation periods.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019-12-26
    Beschreibung: Remotely-sensed identification of ozone stress in crops can allow for selection of ozone resistant genotypes, improving yields. This is critical as population, food demand, and background tropospheric ozone are projected to increase over the next several decades. Visual scores of common ozone damage have been used to identify ozone-stress in bio-indicator plants. This paper evaluates the use of a visual scoring metric of ozone damage applied to soybeans. The scoring of the leaves is then combined with hyperspectral data to identify spectral indices specific to ozone damage. Two genotypes of soybean, Dwight and Pana, that have shown different sensitivities to ozone, were grown and visually scored for ozone-specific damage on multiple dates throughout the growing season. Leaf reflectance, foliar biophysical properties, and yield data were collected. Additionally, ozone bio-indicator plants, snap beans, and common milkweed, were investigated with visual scores and hyperspectral leaf data for comparison. The normalized difference spectral index (NDSI) was used to identify the significant bands in the visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) that best correlated with visual damage score when used in the index. Results were then compared to multiple well-established indices. Indices were also evaluated for correlation with seed and pod weight. The ozone damage scoring metric for soybeans evaluated in August had a coefficient of determination of 0.60 with end-of-season pod weight and a Pearson correlation coefficient greater than 0.6 for photosynthetic rate, stomatal conductance, and transpiration. NDSI [R558, R563] correlated best with visual scores of ozone damage in soybeans when evaluating data from all observation dates. These wavelengths were similar to those identified as most sensitive to visual damage in August when used in NDSI (560 nm, 563 nm). NDSI [R560, R563] in August had the highest coefficient of determination for individual pod weight (R2 = 0.64) and seed weight (R2 = 0.54) when compared against 21 well-established indices used for identification of pigment or photosynthetic stress in plants. When evaluating use of spectral bands in NDSI, longer wavelengths in SWIR were identified as more sensitive to ozone visual damage. Trends in the bands and biophysical properties of the soybeans combined with evaluation of ozone data indicate likely timing of significant ozone damage as after late-July for this season. This work has implications for better spectral detection of ozone stress in crops and could help with efforts to identify ozone tolerant varieties to increase future yield.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...