ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-896X
    Keywords: nanoparticles ; thermal plasma ; nanostructural film ; particle deposition ; silicon carbide ; film hardness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract Nanostructured silicon carbide films have been deposited on molybdenum substrates by hypersonic plasma particle deposition. In this process a thermal plasma with injected reactants (SiCl4 and CH4) is expanded through a nozzle leading to the nucleation of ultrafine particles. Particles entrained in the supersonic flow are then inertially deposited in vacuum onto a temperature-controlled substrate, leading to the formation of a consolidated film. In the experiments reported, the deposition substrate temperature Ts has ranged from 250°C to 700°C, and the effect of Ts on film morphology, composition, and mechanical properties has been studied. Examination of the films by scanning electron microscopy has shown that the grain sizes in the films did not vary significantly with Ts. Micro-X-ray diffraction analysis of the deposits has shown that amorphous films are deposited at low Ts, while crystalline films are formed at high Ts. Rutherford backscattering spectrometry has indicated that the films are largely stoichiometric silicon carbide with small amounts of chlorine. The chlorine content decreases from 8% to 1.5% when the deposition temperature is raised from 450°C to 700°C. Nanoindentation and microindentation tests have been performed on as-deposited films to measure hardness, Young's modulus and to evaluate adhesion strength. The tests show that film adhesion, hardness and Young's modulus increase with increasing Ts. These results taken together demonstrate that in HPPD, as in vapor deposition processes, the substrate temperature may be used to control film properties, and that better quality films are obtained at higher substrate temperatures, i.e. Ts≈700°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-896X
    Keywords: emulsion ; combustion ; ceramic ; nanoparticles ; synthesis ; barium titanate powder
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia–ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia–ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nanoparticle research 1 (1999), S. 267-276 
    ISSN: 1572-896X
    Keywords: nanoparticles ; microemulsions ; reaction engineering ; formation model ; simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract Engineering aspects of the preparation of palladium nanoparticles in non-ionic w/o-microemulsions are examined. In order to achieve reproducible synthesis conditions a semi-batch reactor with a standardized design is used. Influences of the stirring rate and of different ways of concentration control on the product properties are observed. For reproducible synthesis it is important to establish appropriate and defined preparation conditions. Monodisperse palladium particles of around 5 nm size are obtained by adding the microemulsion containing the palladium salt at a constant feed rate to the precharged microemulsion containing the reducing agent. A quantitative kinetic model is proposed to describe particle formation in microemulsions. Unknown parameters of the model have been estimated by independent examinations or can be achieved by fitting to the experimental data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nanoparticle research 1 (1999), S. 349-352 
    ISSN: 1572-896X
    Keywords: alcohol–aqueous salt solutions ; ZrO2 ; nanoparticles ; aging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract Parameters that influence ZrO2 (3-mol% Y2O3 stabilized) nanoparticles prepared by heating of alcohol–aqueous salt solutions were investigated. It revealed that the kind of alcohol used significantly affected the particle size and morphology of the as synthesized nano-ZrO2 powders. The ratio of alcohol to water (R/H) was also important to conduct the gelation process. The dispersion and sintering behavior of the powder could be optimized via aging. By carefully controlling the process, weakly agglomerated ZrO2 nanoparticles with an average particle size of 13-nm (TEM) were achieved. The classical DLVO theory was employed to clarify the effect of solvent on powder morphology, an aging mechanism was proposed as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nanoparticle research 1 (1999), S. 411-418 
    ISSN: 1572-896X
    Keywords: isopycnic centrifugation ; buoyant density ; drug delivery ; nanoparticles ; sucrose linear gradient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract The development of polymer nanoparticles as drug carriers requires numerous steps including several in vitro evaluations in cell cultures and biocompatibility. To perform these experiments, it is crucial to express the particle concentration as the number of particles per volume unit or as the particle surface area. Calculation of these suspension characteristics can be perfomed knowing the size and the density of the nanoparticles as well as the polymer concentration. While particle size and polymer concentration are parameters being determined routinely, this study proposes to measure the density of the nanoparticle drug carriers by isopycnic centrifugation using linear sucrose gradients. The method was found to be very reproducible and it presents the advantage of being applied on a small sample of nanoparticles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-896X
    Keywords: nanoparticles ; measurements ; instrumentation ; standards ; aerosols ; colloids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-896X
    Keywords: nanoparticles ; pulse height analysis ; aerosol ; particle size ; condensation particle counter ; light scattering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract Several of the most common methods for measuring nanoparticle size distributions employ the ultrafine condensation particle counter (UCPC) for detection purposes. Among these methods, the pulse height analysis (PHA) technique, in which the optical response of the UCPC detector is related to initial particle diameter in the 3–10 nm range, prevails in applications where fast sampling is required or for which concentrations of nanoparticles are frequently very low. With the PHA technique, white light is required for particle illumination in order to obtain a monotonic relationship between initial particle diameter and optical response (pulse height). However, the popular, commercially available TSI Model 3025A UCPC employs a laser for particle detection. Here, we report on a novel white-light detection system developed for the 3025A UCPC that involves minimal alteration to the instrument and preserves normal counting operation. Performance is illustrated with pulse height spectra produced by differential mobility analyzer (DMA) – generated calibration aerosols in the 3–50 nm range.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nanoparticle research 2 (2000), S. 199-204 
    ISSN: 1572-896X
    Keywords: nanoscale heat transfer ; nanoparticles ; nanowires ; phonons ; superlattices ; thermal conductivity ; thin films ; microscale effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract Heat conduction in nanostructures differs significantly from that in macrostructures because the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of nanostructures. In this communication, particularities associated with phonon heat conduction in nanostructures, the applicability of the Fourier law, and the implications of nanoscale heat transfer effects on nanotechnology are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nanoparticle research 2 (2000), S. 183-190 
    ISSN: 1572-896X
    Keywords: superlattices ; colloidal particles ; Langmuir–Blodgett films ; electrostatic complexation ; air-water interface ; nanoparticles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract The formation of nanoparticle multilayer films by electrostatic immobilization of surface-modified colloidal particles at the air–water interface has been recently demonstrated by us. In this paper, we extend our study to show that multilayer assemblies consisting of metal particles of different chemical nature (hetero-colloidal particle superlattices) and size can be deposited by the versatile Langmuir–Blodgett technique. Multilayer films consisting of a different number of bilayers of gold and silver colloidal particles have been deposited and characterized using quartz crystal microgravimetry and UV–visible spectroscopy measurements. It is observed that while layer-by-layer deposition of the different colloidal particle assemblies is possible by this technique without a detectable variation in the cluster density in the different layers, a degree of post-deposition reorganization of the clusters occurs in the film. In addition to this aging behavior, the effect of different organic solvents on the reorganization process has also been studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nanoparticle research 1 (1999), S. 115-126 
    ISSN: 1572-896X
    Keywords: nanoparticles ; aerosol charger ; unipolar charging ; Fuchs theory ; experiments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract A novel aerosol charger has been developed, which has high efficiency and high throughput especially for nanometer particles in the size range of 3–50 nm. Unipolar charging with high ion concentration and long charging time is used to obtain the high charging efficiency. High throughput is achieved by reducing particle loss within the charger. This is accomplished by directing ion flow and aerosol flow in the same direction and by the use of sheath air flow. The charger configuration is of a longitudinal design – the direction of aerosol stream and ion stream are flowing parallel along the longitudinal axis of the charger. The charger consists of four sections: the inlet zone, the ion production zone, the unipolar charging zone, and the exit zone. In the inlet and ion production zones, unipolar ions are generated using Po210 radioactive sources with an electric field designed to separate the positive and negative ions, and to focus the selected unipolar ions into the core region of the charger. The ions with the selected polarity is then attracted to the charging zone by an uniform electric field created by a series of ring electrodes applied with a linear ramped voltage. Aerosol entering the charger is sheathed with clean gas flow in order to keep the aerosol in the core region. A novel exit design with a reversed electric field is incorporated in order to minimize the charged particles loss. The performance of the charger is first evaluated using computer simulation and then constructed for experimental validation. Experiment data have demonstrated that the charger achieves 90% and 95% charged-particles penetration efficiency and with 22% and 48% extrinsic charging efficiency at 3 and 5 nm particle sizes, respectively. These performance data represent significant improvement, over a factor of 10, compared with the existing chargers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...