ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (117,832)
  • Maps
  • Other Sources
  • Institute of Physics  (117,832)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (117,832)
Collection
  • Articles  (117,832)
  • Maps
  • Other Sources
Years
Journal
Topic
  • 1
    Publication Date: 2021-11-03
    Description: In this paper, an analytical model of a micro-electromechanical (MEM) resonator used as a 4-bit digital-to-analog converter (DAC) is presented. First, we derive the dynamic equation of the 4-bit DAC device, and the nonlinear governing equation is solved by the Galerkin method combined with a shooting technique to simulate the static response, linear eigenvalue problem, and forced vibration response of the device for various electrostatic actuation cases. Also, we optimize the air gaps in the linear domain to ensure enhanced performance of the DAC. Further, to analyze the operation of the DAC in the nonlinear regime, two experimental samples powered by −2 dBm and −12 dBm AC inputs are examined. Forward and backward frequency sweeps are conducted experimentally and analytically. The proposed analytical results are validated by comparison with experimental data. The results indicate that the presented modeling, simulations, and optimization are effective tools for the design of MEM resonator-based circuits.
    Print ISSN: 0960-1317
    Electronic ISSN: 1361-6439
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-02
    Description: In this paper, an integrated microprism matrix for light coupling and optical sensing systems is presented. The matrix was fabricated by use of controlled negative pressure glass thermal reflow process by the use of monocrystalline mold. The single glass microprism had height of 250 µm or 350 µm with base width respectively 350 µm or 500 µm. The matrix was formed by 10 × 10 microprisms with distance between the microprisms from 150 µm to 400 µm. It corresponded to total area of the matrixes from 28 mm2 to 74 mm2. The controlled coupling of the beam into a substrate was obtained through determination of optimal geometric dimensions of microprisms and configuration of a measurement setup. Optimal position of the fluorescence induction light source in relation to the matrixes (0.5 cm to 4.5 cm distance, 30° angle of incidence) and microfluidic channel (4 mm) were determined. The fluorimetric tests (with excitation by 470 nm laser diode in all the experiments) carried out using fluorescein solution, microbeads and porcine oocyte indicated the possibility of using a microprism matrix for fluorimetric image-based 500 nm long-pass detection in lab-on-a-chip platforms.
    Print ISSN: 0960-1317
    Electronic ISSN: 1361-6439
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-01
    Electronic ISSN: 2399-7532
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-01
    Description: Neutron radiation induces point defects and affects the diffusivity of atoms and the kinetics of precipitation. The phase-field simulation reveals the influence of migration energy of vacancy on the radiation-enhanced precipitation in Fe–Cu alloy. The study shows that radiation-enhanced diffusion (RED) also depends on the diffusivity of vacancy-associated migration energy and not only on the dose rate; the low migration energy of vacancy results in accelerated precipitation and a higher volume fraction of Cu precipitates. Interestingly, decreasing migration energy from 1.0 eV to 0.9 eV results in a 30% increase in the precipitates’ volume fraction. Also, the combination of the lowest dose rate 5.0 × 10−3 dpa s−1 and highest migration energy 1.0 eV delays the precipitation. The study also examines the influence of migration energy of vacancy on the radius of Cu precipitates. The lowest migration energy, 0.9 eV, increases the radius up to one-third. Finally, the work presents the drawbacks of the analytical digital image processing technique in the quantitative comparison with the script.
    Print ISSN: 0965-0393
    Electronic ISSN: 1361-651X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-31
    Description: This paper presents a molecular structure-informed viscoelastic constitutive equation that adopts the Doi-Edward’s tube model with coarse-grained molecular dynamics (MD) simulation and primitive path analysis. Since this model contains polymer physics-related parameters directly obtained from molecular simulations, it can reflect molecular information in predictions of the viscoelastic behavior of elastomers, unlike other empirical models. The proposed incremental formulations and constitutive stiffness matrix were implemented into implicit finite element analysis (FEA) codes as a user-supplied material model and viscoelastic properties (storage, loss modulus, and tan⁡δ) were calculated from the constitutive equation. While obtaining polymer dynamics parameter of the molecular system, a relationship between self-diffusivity coefficient (D_c) and the polymerization degree of the polymer was confirmed. Furthermore, a series of parametric studies showed that increase of the primitive path length (L) and decrease of D_c have led to the strengthening of moduli and decrease of tan⁡δ peak. Moreover, under the same condition, the shift of tan⁡δ peak to low-frequency domain was observed, which implies a decline in free volume in the molecular system and an increase in the glass transition temperature.
    Electronic ISSN: 2631-6331
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-29
    Description: In this study, we propose an annular-shaped piezoelectric micromachined ultrasonic transducer (pMUT) based on a Pb(Zr,Ti)O3-based monocrystalline thin film. This pMUT is expected to increase the resonance frequency while maintaining displacement sensitivity, making it superior to an island-shaped pMUT, which is a conventional design. To demonstrate the validity of this assumption, annular- and island-shaped pMUTs with a 60-μm-diameter diaphragm were prototyped and characterized. As a result, the annular-shaped pMUT exhibited a resonance frequency of 11.9 MHz, a static displacement sensitivity of 2.35 nm/V and a transmitting figure-of-merit (FOM) of 28 nm∙MHz/V. On the other hand, the island-shaped pMUT exhibited a resonance frequency of 9.6 MHz and a static displacement of 2.5 nm/V and an FOM of 24 nm∙MHz/V. Therefore, the annular-shaped pMUT was experimentally demonstrated to provide a higher FOM compared to the island-shaped pMUT. In addition, the annular-shaped pMUT with the optimal dimensions is found to be able to keep a relatively large fabrication margin. This is an advantageous point for the practical device fabrication. We believe this design has a potential to become a standard design for high-performance pMUT devices.
    Print ISSN: 0960-1317
    Electronic ISSN: 1361-6439
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-29
    Description: This paper aims to investigate the influence of periodicity temperature change on the properties of dry granular materials in macroscopic and microscopic. A series of cyclic thermal consolidation tests have been carried out based on the discrete element method (DEM) that incorporate particles’ volumetric thermal expansion coefficient. The simulation of the direct shear test was carried out on the samples after thermal cycling. Results showed that thermally-induced volumetric strain accumulation of the specimen can be calculated by the DEM model, based on the PFC2D software. The lateral pressure degraded concomitantly thanks to decreases in particles’ horizontal contact during periodic thermal cycling. In addition, the shear dilatancy level decreases during the shearing process with the number of thermal cycles. Both the size and anisotropy of the normal contact force and contact number and the force chain are affected by the temperature cycle. Finally, the results of this paper have a certain reference for the engineering practice, such as thermal piles or others, when granular materials are subjected to thermal cycling.
    Electronic ISSN: 2053-1591
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-29
    Description: Liquid crystalline elastomers (LCEs) exhibit some remarkable physical properties, such as the reversible large mechanical deformation induced by proper environmental stimuli of different nature, such as the thermal stimulus, allowing their use as soft actuators. The unique features displayed by LCE are originated from their anisotropic microstructure characterized by the preferential orientation of the mesogen molecules embedded in the polymer network. An open issue in the design of LCEs is how to control their actuation effectiveness: the amount of mesogens molecules, how they are linked to the network, the order degree, the cross-link density are some controllable parameters whose spatial distribution, however, in general cannot be tuned except the last one. In this paper, we develop a theoretical micromechanical-based framework to model and explore the effect of the network cross-link density on the mechanical actuation of elements made of liquid crystalline elastomer. In this context, the light-induced polymerization (photopolymerization) for obtaining the elastomers’ cross-linked network is of particular interest, being suitable for precisely tuning the cross-link density distribution within the material; this technology enables to obtain a molecular-scale architected LCEs, allowing the optimal design of the obtainable actuation. The possibility to properly set the cross-link density arrangement within the smart structural element (LCE microstructure design and optimization), represents an intriguing way to create molecular-scale engineered LCE elements having material microstructure encoded desired actuation capabilities.
    Print ISSN: 0964-1726
    Electronic ISSN: 1361-665X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-29
    Description: Due to their large deformation, high energy density, and high compliance, dielectric elastomer actuators (DEAs) have found a number of applications in several areas of mechatronics and robotics. Among the many types of DEAs proposed in the literature, rolled DEAs (RDEAs) represent one of the most popular configurations. RDEAs can be effectively used as compact muscle-like actuators for soft robots, since they allow eliminating the need for external motors or compressors while providing at the same time a flexible and lightweight structure with self-sensing capabilities. To effectively design and control complex RDEA-driven systems and robots, accurate and numerically efficient mathematical models need to be developed. In this work, we propose a novel lumped-parameter model for silicone-based, thin and tightly rolled DEAs. The model is grounded on a free-energy approach, and permits to describe the electro-mechanically coupled response of the transducer with a set of nonlinear ordinary differential equations. After deriving the constitutive relationships, the model is validated by means of an extensive experimental campaign, conducted on three RDEA specimens having different geometries. It is shown how the developed model permits to accurately predict the effects of several parameters (external load, applied voltage, actuator geometry) on the RDEA electro-mechanical response, while maintaining an overall simple mathematical structure.
    Print ISSN: 0964-1726
    Electronic ISSN: 1361-665X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-29
    Description: The pressure and temperature inside the tire is mainly monitored by the tire pressure monitoring system (TPMS). In order to improve the integration of the TPMS system, moreover enhance the sensitivity and temperature-insensitivity of pressure measurement, this paper proposes a microelectromechanical (MEMS) chip-level sensor based on stress-sensitive aluminum-silicon hybrid structures with amplified piezoresistive effect and temperature-dependent aluminum-silicon hybrid structures for hardware and software temperature compensations. Two types of aluminum-silicon hybrid structures are located inside and outside the strained menbrane to simultaneously realize the measurement of pressure and temperature. The model of this composite sensor chip is firstly designed and verified for its effectiveness by using finite element numerical simulation, and then it is fabricated based on the standard MEMS process. The experiments indicate that the pressure sensitivity of the sensor is between 0.126 mV/(V·kPa) and 0.151 mV/(V·kPa) during the ambient temperature ranges from -20 ℃ to 100 ℃, while the measurement error, sensitivity and temperature coefficient of temperature-dependent hybrid structures are individually ± 0.91℃, -1.225 mV/(V·℃) and -0.150%/℃. The thermal coefficient of offset (TCO) of pressure measurement can be reduced from -3.553%FS/℃ to -0.375%FS/℃ based on the differential output of the proposed sensor. In order to obtain the better performance of temperature compensation, Elman neural network based on ant colony algorithm is applied in the data fusion of differential output to further eliminate the temperature drift error. Based on which, the overall measured error is within 3.45 kPa, which is less than ±1.15%FS. The thermal coefficient of offset (TCO) is -0.017%FS/℃, and the thermal coefficient of span (TCS) is -0.020%/FS℃. The research results may provide a useful reference for the development of the high-performance MEMS composite sensor for the TPMS system.
    Print ISSN: 0960-1317
    Electronic ISSN: 1361-6439
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...