ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (3,531,829)
  • Oxford University Press  (428,982)
  • Nature Publishing Group  (363,433)
  • Cell Press  (242,170)
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2024-06-18
    Description: The macrofauna in soft sediments of the deep seafloor is generally diverse and represents a comparatively well-studied faunal group of deep-sea ecosystems. In the abyss of the Clarion Clipperton Fracture Zone (CCFZ) in the NE Pacific, macrofauna are major contributors to benthic biodiversity. Their distribution, composition, and diversity have been frequently investigated to assess the potential impacts of future mining activities on the resident fauna. In this study, patterns of densities and community structure of CCFZ macrobenthic infauna and their relationships with a range of environmental and climatic variables were examined, with a special focus on communities from the eastern German contract area (referred to as BGR CA). However, comparisons were also made with other contractor areas (e.g., IFREMER, IOM, GSR) and one Area of Particular Environmental Interest (APEI3). Material for this study was obtained by means of a box corer during six expeditions to the CCFZ between 2013 and 2018 resulting in 148 samples. Our study uncovered notable spatial and temporal variations in both faunal densities and community composition. While areas within the BGR CA exhibited a similar community composition, slight differences were observed between the various CAs and APEI3. Surprisingly, we found an unexpected negative correlation between food availability and both macrofaunal density and community structure that may be attributed to differences in sampling methodologies and pronounced temporal variation. Furthermore, we explored the impact of climatic fluctuations associated with the El Niño/Southern Oscillation (ENSO) on macrofaunal densities, observing an increase during warm (El Niño) events. Our findings underscore the challenges of accurately assessing spatial and temporal variations in the absence of standardised sampling protocols. Hence, we emphasize the importance of adopting standardised protocols to enhance data comparability, thereby fostering a deeper understanding of the underlying factors influencing spatial and temporal changes in macrofauna community structure within the CCFZ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-18
    Description: Predatory non-indigenous species (NIS) have profound impacts on global ecosystems, potentially leading to native prey extinction and reshaping community dynamics. Among mechanisms potentially mediating predator impacts and prey invasion success are predator preferences between native vs. non-indigenous prey, a topic still underexplored. Using functional response and prey preference experiments, this study focused on the predation by the non-indigenous Japanese brush-clawed shore crab, Hemigrapsus takanoi, between the native gammarid Gammarus duebeni and the analogous non-indigenous Gammarus tigrinus. Although H. takanoi showed subtle differences in its functional response type between the two prey species, its preferences across their environmental frequencies were not strongly influenced by the prey invasion scenario. The findings highlight the need for a comprehensive understanding of interactions in ecosystems with multiple NIS, offering fresh insights into complex feeding interactions within marine environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-17
    Description: Digital transformation and technological advances are causing a radical change in com‑ munication structures and in the way information is consumed. With rapid development of computing and the Internet, data is generated, recorded, stored and accumulated on a large scale, making it necessary for economic sectors to act quickly in order to adapt their busi‑ nesses to the online environment and thus, ensure their own survival. The application of Big Data in tourism enables to transform all this data into useful information, so that com‑ panies in the sector can defne and optimize their strategies in order to increase their prof‑ its. This article performs a comparative bibliometric analysis of the presence and impact of scientifc production related to Big Data within the area of tourism research indexed in the WoS and Scopus databases. The aim is to know key aspects such as its growth, correlation, citation, coverage, overlap, dispersion or concentration that will support future research‑ ers when they start their work in this emerging feld. From the analysis of the 113 articles selected between the two bases through an advanced search for terms with a time limit set in 2019, it can be concluded that this is a new feld of knowledge, which has aroused great interest since 2017, publishing about two thirds of the articles during the period 2017– 2019. Although WoS and Scopus difer in general terms in scope and coverage policies, both systems are complementary and not exclusive. In the specifc area of Big Data and Tourism Research, Scopus is the base that provides better coverage by collecting a higher number of articles and receiving more citations.
    Description: Published
    Description: 271–292
    Description: OSA5: Energia e georisorse
    Description: N/A or not JCR
    Keywords: Big data ; Tourism ; Bibliometric study ; Citation analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-17
    Description: Thermobarometry provides a critical means of assessing locations of magma storage and dynamics in the lead-up to volcanic eruptions and crustal growth. A common approach is to utilise minerals that have compositions sensitive to changes in pressure and/or temperature, such as clinopyroxene, which is ubiquitous in mafic to intermediate magmas. However, clinopyroxene thermobarometry may carry significant uncertainty and require an appropriate equilibrium melt composition. In addition, the degree of magma undercooling (ΔT) affects clinopyroxene composition and zoning, with common sector zoning potentially obfuscating thermobarometry results. Here, we use a set of crystallisation experiments on a primitive trachybasalt from Mt. Etna (Italy) at ΔT = 25–233 °C, P = 400–800 MPa, H2O = 0–4 wt % and fO2 = NNO + 2, with clinopyroxene crystals defined by Al-rich zones (prisms and skeletons) and Al-poor zones (hourglass and overgrowths) to assess common equilibrium models and thermobarometric approaches. Under the studied conditions, our data suggest that the commonly applied Fe–Mg exchange (cpx-meltKdFe–Mg) is insensitive to increasing ΔT and may not be a reliable indicator of equilibrium. The combined use of DiHd (CaMgSi2O6 + CaFeSi2O6) and EnFs (Mg2Si2O6 + Fe2Si2O6) models indicate the attainment of equilibrium in both Al-rich and Al-poor zones for almost all investigated ΔT. In contrast, CaTs (CaAl2SiO6) and CaTi (CaTiAl2O6) models reveal substantial deviations from equilibrium with increasing ΔT, particularly in Al-rich zones. We postulate that this reflects slower diffusion of Al and Ti in the melt compared with Ca and Mg and recommend the concurrent application of these four models to evaluate equilibrium between clinopyroxene and melt, particularly for sector-zoned crystals. Thermobarometers calibrated with only isothermal–isobaric experiments closely reproduce experimental P–T at low ΔT, equivalent to natural phenocrysts cores and sector-zoned mantles. Models that also consider decompression experiments are most accurate at high ΔT and are therefore suitable for outermost phenocryst rims and groundmass microlites. Recent machine learning approaches reproduce P–T conditions across all ΔT conditions. Applying our experimental constraints to sector-zoned microphenocrysts and groundmass microlites erupted during the 1974 eccentric eruption at Mt. Etna, we highlight that both hourglass and prism sectors are suitable for thermobarometry, given that equilibrium is sufficiently tested for. The combination of DiHd, EnFs, CaTs and CaTi models identifies compositions closest to equilibrium with the bulk melt composition, and results in smaller differences in P–T calculated for hourglass and prism sectors compared with applying only DiHd and EnFs equilibrium models. This provides a framework to assess crystallisation conditions recorded by sector-zoned clinopyroxene crystals in mafic alkaline settings.
    Description: Published
    Description: egad074
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Experimental Petrology ; Petrology ; Clinopyroxene ; Thermobarometry ; Experimental Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-17
    Description: Several species from various zooplankton taxa perform seasonal vertical migrations (SVM) of typically several hundred meters between the surface layer and overwintering depths, particularly in high-latitude regions. We use OPtimality-based PLAnkton (OPPLA) ecosystem model) to simulate SVM behavior in zooplankton in the Labrador Sea. Zooplankton in OPPLA is a generic functional group without life cycle, which facilitates analyzing SVM evolutionary stability and interactions between SVM and the plankton ecosystem. A sensitivity analysis of SVM-related parameters reveals that SVM can amplify the seasonal variations of phytoplankton and zooplankton and enhance the reduction of summer surface nutrient concentrations. SVM is often explained as a strategy to reduce exposure to visual predators during winter. We find that species doing SVM can persist and even dominate the summer-time zooplankton community, even in the presence of Stayers, which have the same traits as the migrators, but do not perform SVM. The advantage of SVM depends strongly on the timing of the seasonal migrations, particularly the day of ascent. The presence of higher (visual) predators tends to suppress the Stayers in our simulations, whereas the SVM strategy can persist in the presence of non-migrating species even without higher predators.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-17
    Description: Seismic data analysis often faces the challenge of random noise contamination from various sources. To overcome this, innovative noise attenuation methods utilizing seismic signal properties are needed. This study focuses on efficiently suppressing random noise in the domain of time and frequency by accurately estimating instantaneous frequency using the single-valued group delay characteristic of seismic signals. The time-reassigned synchrosqueezing transform (TSST) and its second-order variant (TSST2) offer high-resolution time-frequency representations (TFRs) for noise suppression. Expanding on these advancements, we propose an efficient noise suppression method that integrates the adaptive thresholding model into the TSST2 framework and employs sparse representation of the TFR through low-rank estimation. This method effectively attenuates noise while preserving essential signal information. The proposed approach operates trace by trace on recorded data, initially transforming it into a sparse subspace using TSST2. The adaptive thresholding model then decomposes the resulting TFR into sparse and semi-low-rank components, achieving a high-resolution and sparse TFR for efficient separation of noise and signal. After noise suppression, the seismic data can be fully reconstructed by inversely transforming the semi-low-rank component data into the time domain. This method addresses previous limitations in noise attenuation techniques and provides a practical solution for enhancing seismic data quality.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-14
    Description: Gas chimneys and gas clouds in the subsurface media are known as one of the indications of possible petroleum reservoirs. Investigations of their properties are mostly initiated by seismic attribute interpretation on reflection seismic data. However, due to the complexity of their behavior and their difficult interpretation of seismic attributes, state-of-the-art methods are mostly required to be applied on the seismic data to prevent any misinterpretation. This is mostly done through attribute integration and multi-attribute analysis. This research presents a study on seismic attributes and integration on several 2D seismic reflection lines from the Gorgan Plain. It is located in Northeast Iran, on the western border of the region’s well-known Kopeh-Dagh fold and thrust belt, and southeastern border of the South Caspian Basin. Hydrocarbon systems of the Gorgan Plain are poorly known and have not been widely studied, but according to preliminary investigations, this region has the potential for hydrocarbon occurrences. The aim of this study is to investigate presence and then delaminate the affected area of possible gas chimneys that are related to possible hydrocarbon reservoirs. Gas chimneys are assumed to be created due to the routes, mostly made by faults, that provoke light hydrocarbons components to migrate toward the surface. Preliminary interpretations of seismic reflection data in this study revealed that at least two gas chimneys occurred within the Gorgan Plain. As it was mentioned, since they are mostly due to the faulting above the hydrocarbon reservoir, gas chimney and heavy faulting might exhibit the same effects on the seismic data and then on its attributes, which are amplitude reduction and high damping on energies, distortion of the waveshape and seismic velocity reduction. Thus, care should be taken in separation of these two different geologic phenomena on seismic attributes. This also was done in this study through utilized integration of the most relevant seismic attributes such as Instantaneous-phase, Chaos, Variance and Remove-bias attributes. Based on the result of interpretations and according to the evolution of the basin and its structural reconstruction on other studies, gas chimneys of the Gorgan Plain, are in relation to the operation of fault zones in Cenozoic erathem in the region. These fault zones which cut the entire Cenozoic erathem, create the pathway for vertical migration of hydrocarbons through Cheleken formation (reservoir rock) and its overburden sedimentary sequences. In other words, operation of fault zones within Cenozoic sedimentary sequence, is the main reason for gas seepage in the Gorgan Plain, which is also shown in seismic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-13
    Description: The ability to predict the mobility of rock avalanches is necessary when designing strategies to mitigate the risks they pose. A popular mobility indicator of the flow front is the Heim’s apparent friction coefficient muH. In the field, muH shows a decrease in value as flow volume V increases. But this correlation has been a mystery as to whether it is due to a causal relationship between V and mobility since: (1) field data of muH do not collapse onto a single curve because typically widely scattered and (2) laboratory experiments have shown an opposite volume effect on the center of mass mobility of miniature flows. My numerical simulations confirm for the first time the existence of a functional relationship of scaling parameters where muH decreases as V increases in unsteady and nonuniform 3D flows. Data scatter is caused by muH that is affected by numerous other variables besides V. The interplay of these variables produces different granular regimes with opposite volume effects. In particular, muH decreases as V increases in the regime characterized by a relatively rough subsurface. The relationship holds for large-scale flows that, like rock avalanches, consist of a very large number of fine clasts traveling in wide channels. In these dense flows, flow front mobility increases as flow volume increases, as channel width increases, as grain size decreases, as basal friction decreases and as flow scale increases. Larger-scale flows are more mobile because they have larger Froude number values.
    Description: Published
    Description: 933–947
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: Pyroclastic Flows ; Rock Avalanches ; Flow Front ; Mobility
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-13
    Description: Neomphaloidean gastropods are endemic to chemosynthesis-based ecosystems ranging from hot vents to organic falls, and their diversity and evolutionary history remain poorly understood. In the southwestern Pacific, deep-sea hydrothermal vents on back-arc basins and volcanic arcs are found in three geographically secluded regions: a western region around Manus Basin, an eastern region around North Fiji and Lau Basins, and the intermediate Woodlark Basin where active venting was confirmed only recently, on the 2019 R/V L’Atalante CHUBACARC expedition. Although various lineages of neomphaloidean snails have been detected, typically restricted to one of the three regions, some of these have remained without names. Here, we use integrative taxonomy to describe three of these species: the neomphalid Symmetromphalus mithril sp. nov. from Woodlark Basin and the peltospirids Symmetriapelta becki sp. nov. from the eastern region and Symmetriapelta radiata sp. nov. from Woodlark Basin. A combination of shell sculpture and radular characters allow the morphological separation of these new species from their described congeners. A molecular phylogeny reconstructed from 570 bp of the mitochondrial cytochrome c oxidase subunit I gene confirmed the placement of the three new species in their respective genera and the superfamily Neomphaloidea. The finding of these new gastropods, particularly the ones from the Woodlark Basin, provides insights and implications on the historical role of Woodlark as a dispersing centre, in addition to highlighting the uniqueness of the Woodlark faunal community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-10
    Description: Weather causes extremes in photovoltaic and wind power production. Here we present a comprehensive climatology of anomalies in photovoltaic and wind power production associated with weather patterns in Europe considering the 2019 and potential 2050 installations, and hourly to ten-day events. To that end, we performed kilometer-scale numerical simulations of hourly power production for 23 years and paired the output with a weather classification which allows a detailed assessment of weather-driven spatio-temporal production anomalies. Our results highlight the dependency of low-power production events on the installed capacities and the event duration. South-shifted Westerlies (Anticyclonic South-Easterlies) are associated with the lowest hourly (ten-day) extremes for the 2050 (both) installations. Regional power production anomalies can differ from the ones in the European mean. Our findings suggest that weather patterns can serve as indicators for expected photovoltaic and wind power production anomalies and may be useful for early warnings in the energy sector.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...