ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (3,531,831)
  • Springer Nature  (1,070,395)
  • Blackwell Publishing Ltd  (182,058)
Collection
Publisher
Language
Years
  • 11
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3International Journal of Biometeorology, Springer Nature, 68(4), pp. 1-17, ISSN: 0020-7128
    Publication Date: 2024-06-21
    Description: The Great Lakes region of North America has warmed by 1–2 °C on average since pre-industrial times, with the most pronounced changes observable during winter and spring. Interannual variability in temperatures remains high, however, due to the influence of ocean-atmosphere circulation patterns that modulate the warming trend across years. Variations in spring temperatures determine growing season length and plant phenology, with implications for whole ecosystem function. Studying how both internal climate variability and the “secular” warming trend interact to produce trends in temperature is necessary to estimate potential ecological responses to future warming scenarios. This study examines how external anthropogenic forcing and decadal-scale variability influence spring temperatures across the western Great Lakes region and estimates the sensitivity of regional forests to temperature using long-term growth records from tree-rings and satellite data. Using a modeling approach designed to test for regime shifts in dynamic time series, this work shows that mid-continent spring climatology was strongly influenced by the 1976/1977 phase change in North Pacific atmospheric circulation, and that regional forests show a strengthening response to spring temperatures during the last half-century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-06-21
    Description: The Last Interglacial (~129,000–116,000 years ago) is the most recent geologic period with a warmer-than-present climate. Proxy-based temperature reconstructions from this interval can help contextualize natural climate variability in our currently warming world, especially if they can define changes on decadal timescales. Here, we established a ~4.800-year-long record of sea surface temperature (SST) variability from the eastern Mediterranean Sea at 1–4-year resolution by applying mass spectrometry imaging of long-chain alkenones to a finely laminated organic-matter-rich sapropel deposited during the Last Interglacial. We observe the highest amplitude of decadal variability in the early stage of sapropel deposition, plausibly due to reduced vertical mixing of the highly stratified water column. With the subsequent reorganization of oceanographic conditions in the later stage of sapropel deposition, when SST forcing resembled the modern situation, we observe that the maximum amplitude of reconstructed decadal variability did not exceed the range of the recent period of warming climate. The more gradual, centennial SST trends reveal that the maximal centennial scale SST increase in our Last Interglacial record is below the projected temperature warming in the twenty-first century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-06-21
    Description: The cold Last Glacial Maximum, around 20,000 years ago, provides a useful test case for evaluating whether climate models can simulate climate states distinct from the present. However, because of the indirect and uncertain nature of reconstructions of past environmental variables such as sea surface temperature, such evaluation remains ambiguous. Instead, here we evaluate simulations of Last Glacial Maximum climate by relying on the fundamental macroecological principle of decreasing community similarity with increasing thermal distance. Our analysis of planktonic foraminifera species assemblages from 647 sites reveals that the similarity-decay pattern that we obtain when the simulated ice age seawater temperatures are confronted with species assemblages from that time differs from the modern. This inconsistency between the modern temperature dependence of plankton species turnover and the simulations arises because the simulations show globally rather uniform cooling for the Last Glacial Maximum, whereas the species assemblages indicate stronger cooling in the subpolar North Atlantic. The implied steeper thermal gradient in the North Atlantic is more consistent with climate model simulations with a reduced Atlantic meridional overturning circulation. Our approach demonstrates that macroecology can be used to robustly diagnose simulations of past climate and highlights the challenge of correctly resolving the spatial imprint of global change in climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Frontiers of Earth Science, Springer Nature, 17(4), pp. 1037-1048, ISSN: 2095-0195
    Publication Date: 2024-06-20
    Description: Plant environmental DNA extracted from lacustrine sediments (sedimentary DNA, sedDNA) has been increasingly used to investigate past vegetation changes and human impacts at a high taxonomic resolution. However, the representation of vegetation communities surrounding the lake is still unclear. In this study, we compared plant sedDNA metabarcoding and pollen assemblages from 27 lake surface-sediment samples collected from alpine meadow on the central-eastern Tibetan Plateau to investigate the representation of sedDNA data. In general, the identified components of sedDNA are consistent with the counted pollen taxa and local plant communities. Relative to pollen identification, sedDNA data have higher taxonomic resolution, thus providing a potential approach for reconstructing past plant diversity. The sedDNA signal is strongly influenced by local plants while rarely affected by exogenous plants. Because of the overrepresentation of local plants and PCR bias, the abundance of sedDNA sequence types is very variable among sites, and should be treated with caution when investigating past vegetation cover and climate based on sedDNA data. Our finding suggests that sedDNA analysis can be a complementary approach for investigating the presence/absence of past plants and history of human land-use with higher taxonomic resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-06-20
    Description: Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-06-20
    Description: Sea ice is a key factor for the functioning and services provided by polar marine ecosystems. However, ecosystem responses to sea-ice loss are largely unknown because time-series data are lacking. Here, we use shotgun metagenomics of marine sedimentary ancient DNA off Kamchatka (Western Bering Sea) covering the last ~20,000 years. We traced shifts from a sea ice-adapted late-glacial ecosystem, characterized by diatoms, copepods, and codfish to an ice-free Holocene characterized by cyanobacteria, salmon, and herring. By providing information about marine ecosystem dynamics across a broad taxonomic spectrum, our data show that ancient DNA will be an important new tool in identifying long-term ecosystem responses to climate transitions for improvements of ocean and cryosphere risk assessments. We conclude that continuing sea-ice decline on the northern Bering Sea shelf might impact on carbon export and disrupt benthic food supply and could allow for a northward expansion of salmon and Pacific herring.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-06-18
    Description: The macrofauna in soft sediments of the deep seafloor is generally diverse and represents a comparatively well-studied faunal group of deep-sea ecosystems. In the abyss of the Clarion Clipperton Fracture Zone (CCFZ) in the NE Pacific, macrofauna are major contributors to benthic biodiversity. Their distribution, composition, and diversity have been frequently investigated to assess the potential impacts of future mining activities on the resident fauna. In this study, patterns of densities and community structure of CCFZ macrobenthic infauna and their relationships with a range of environmental and climatic variables were examined, with a special focus on communities from the eastern German contract area (referred to as BGR CA). However, comparisons were also made with other contractor areas (e.g., IFREMER, IOM, GSR) and one Area of Particular Environmental Interest (APEI3). Material for this study was obtained by means of a box corer during six expeditions to the CCFZ between 2013 and 2018 resulting in 148 samples. Our study uncovered notable spatial and temporal variations in both faunal densities and community composition. While areas within the BGR CA exhibited a similar community composition, slight differences were observed between the various CAs and APEI3. Surprisingly, we found an unexpected negative correlation between food availability and both macrofaunal density and community structure that may be attributed to differences in sampling methodologies and pronounced temporal variation. Furthermore, we explored the impact of climatic fluctuations associated with the El Niño/Southern Oscillation (ENSO) on macrofaunal densities, observing an increase during warm (El Niño) events. Our findings underscore the challenges of accurately assessing spatial and temporal variations in the absence of standardised sampling protocols. Hence, we emphasize the importance of adopting standardised protocols to enhance data comparability, thereby fostering a deeper understanding of the underlying factors influencing spatial and temporal changes in macrofauna community structure within the CCFZ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-06-18
    Description: Predatory non-indigenous species (NIS) have profound impacts on global ecosystems, potentially leading to native prey extinction and reshaping community dynamics. Among mechanisms potentially mediating predator impacts and prey invasion success are predator preferences between native vs. non-indigenous prey, a topic still underexplored. Using functional response and prey preference experiments, this study focused on the predation by the non-indigenous Japanese brush-clawed shore crab, Hemigrapsus takanoi, between the native gammarid Gammarus duebeni and the analogous non-indigenous Gammarus tigrinus. Although H. takanoi showed subtle differences in its functional response type between the two prey species, its preferences across their environmental frequencies were not strongly influenced by the prey invasion scenario. The findings highlight the need for a comprehensive understanding of interactions in ecosystems with multiple NIS, offering fresh insights into complex feeding interactions within marine environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-06-18
    Description: Sedimentary DNA-based studies revealed the effects of human activity on lake cyanobacteria communities over the last centuries, yet we continue to lack information over longer timescales. Here, we apply high-resolution molecular analyses on sedimentary ancient DNA to reconstruct the history of cyanobacteria throughout the Holocene in a lake in north-eastern Germany. We find a substantial increase in cyanobacteria abundance coinciding with deforestation during the early Bronze Age around 4000 years ago, suggesting increased nutrient supply to the lake by local communities settling on the lakeshore. The next substantial human-driven increase in cyanobacteria abundance occurred only about a century ago due to intensified agricultural fertilisation which caused the dominance of potentially toxic taxa (e.g., Aphanizomenon). Our study provides evidence that humans began to locally impact lake ecology much earlier than previously assumed. Consequently, managing aquatic systems today requires awareness of the legacy of human influence dating back potentially several millennia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-06-18
    Description: Climate change is expected to cause major shifts in boreal forests which are in vast areas of Siberia dominated by two species of the deciduous needle tree larch (Larix). The species differ markedly in their ecosystem functions, thus shifts in their respective ranges are of global relevance. However, drivers of species distribution are not well understood, in part because paleoecological data at species level are lacking. This study tracks Larix species distribution in time and space using target enrichment on sedimentary ancient DNA extracts from eight lakes across Siberia. We discovered that Larix sibirica, presently dominating in western Siberia, likely migrated to its northern distribution area only in the Holocene at around 10,000 years before present (ka BP), and had a much wider eastern distribution around 33 ka BP. Samples dated to the Last Glacial Maximum (around 21 ka BP), consistently show genotypes of L. gmelinii. Our results suggest climate as a strong determinant of species distribution in Larix and provide temporal and spatial data for species projection in a changing climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...