ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-03-07
    Description: A ship rain gauge has been developed that can be used under high wind speeds such as those experienced by ships at sea. The instrument has an improved aerodynamic design and an additional lateral collecting surface, which is effective especially with high wind speeds. The ship rain gauge has been calibrated at sea against a specially designed optical disdrometer. An accuracy of 2%–3% has been obtained for 6-hourly sums. The ship rain gauge has also successfully been tested at a test site of the German Weather Service and presently is used on research vessels and voluntary observing ship.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-07
    Description: Ocean currents’ effect on long-range sound propagation, though considerable in many cases, is difficult to separate from much stronger effects due to sound speed inhomogeneities, as flow velocity is usually much smaller than typical variations in the sound speed. Dramatic improvement can be achieved in reciprocal transmission experiments when sound signals propagate in opposite directions between two transceivers (source–receiver pairs). The presence of a current results in the breaking of the principle of acoustic reciprocity, thus making it possible to use nonreciprocity of acoustic field as an indicator of water movement. In this paper, reciprocal acoustic transmissions through a submesoscale interthermocline lens of Mediterranean Water (meddy) in the Atlantic are considered theoretically as a possible tool for meddies detection. A simple model of acoustic ray-travel-time nonreciprocity due to a meddy is proposed. The analytic estimates obtained from the model show that the influence of rotary flow is more important than that of drift and seems to be measurable. The problem is studied in more detail via computer simulations. The environmental model used in the simulations corresponds to case studies performed in the Iberian Basin in 1989 and 1991. Numerical simulations show that travel times between two transceivers can be gathered into several groups; for the most part, rays in each set have similar geometry for both propagation directions. However, the lens strongly affects the number of rays in each group, their launch angles, and number of surface interactions, making it impossible to identify these arrivals as required for conventional ocean acoustic tomography. In spite of complexity of ray structure, travel-time nonreciprocity predicted by the model proposed is in good agreement with numerical results. This fact suggests that the model could be used to estimate some parameters of a meddy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 11 (3). pp. 297-312.
    Publication Date: 2021-02-25
    Description: In this study, a hybrid coupled model (HCM) is used to investigate the physics of decadal variability in the North Pacific. This aids in an understanding of the inherent properties of the coupled ocean–atmosphere system in the absence of stochastic forcing by noncoupled variability. It is shown that the HCM simulates a self-sustained decadal oscillation with a period of about 20 yr, similar to that found in both the observations and coupled GCMs. Sensitivity experiments are carried out to determine the relative importance of wind stresses, net surface heat flux, and freshwater flux on the initiation and maintenance of the decadal oscillation in the North Pacific. It is found that decadal variability is a mode of the coupled system and involves interaction of sea surface temperature, upper-ocean heat content, and wind stress. This interaction is mainly controlled by the wind stress but can be strongly modified by the surface heat flux. The effect of the salinity is relatively small and is not necessary to generate the model decadal oscillation in the North Pacific. There are some limitations with this study. First, the effect of a stochastic forcing is not included. Second, a weak negative feedback is needed to run the control experiment for a longer time period. These two areas will be addressed in a future investigation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 12 (4). pp. 923-934.
    Publication Date: 2020-08-04
    Description: A method to derive salinity data from RAFOS float temperature and pressure measurements is described. It is based on evaluating the float's in situ density from its mechanical properties and in situ pressure and temperature data. The salinity of the surrounding water may then be determined, assuming that the float has reached equilibrium with its environment. This method, in comparison with the possible use of floatborne salinity cells, has the advantage of being both cost and energy neutral and highly stable in the long term. The effect on the estimated salinity of various parameters used in the determination of the float's in situ density is discussed. Results of seven RAFOS Boats deployed in the Brazil Basin are compared with corresponding CTD data to estimate the magnitude of these errors. At present, an accuracy of 0.3 psu is achieved. The accuracy may be improved to 0.02 psu by referring the float's calculated density to a reference density established by a CTD cast at the time of launch. Results from five floats deployed in the heterogeneous water masses of the Iberian Basin are compared with the corresponding CM casts to demonstrate the variability and interpretation of p-T-S float datasets from different areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 25 (1). pp. 77-91.
    Publication Date: 2020-08-04
    Description: The Southern Hemisphere Subtropical Front (STF) is a narrow zone of transition between upper-level subtropical waters to the north and subantarctic waters to the south. It is found near 40 degrees S across the South Atlantic and South Indian Oceans and is associated with an eastward geostrophic current band, The current band in each basin is found at or just north of the surface front except near the eastern boundaries where most of the subtropical waters turn north into the eastern limbs of the subtropical gyres. The bands associated with the STF are thus distinct features separated from the strong zonal flows of the Antarctic Circumpolar Current farther south. The authors have referred to the current bands in the two respective oceans as the South Atlantic Current and the South Indian Ocean Current. In this paper the authors use the historical database from the South Pacific Ocean to investigate the geostrophic flow associated with the STF there. The STF extends across the southern Tasman Sea from south of Tasmania to southern New Zealand, and a weak eastward flow appears to be associated with it. The transport amounts to only about 3 Sv (1Sv = 10(6) m(3) s(-1)), little of which passes south of New Zealand. Mixing within the eddy-rich Tasman Sea may account for this weakness, while also setting up another more significant front in the northern Tasman Sea, the Tasman Front. It branches off from the East Australian Current toward the north of New Zealand, along which moves a flow of about 14 Sv. After passing north of New Zealand, a portion of this current flows east to contribute to a current band near 30 degrees S, while another portion turns south as the East Auckland Current and meets with subantarctic waters near Chatham Rise (44 degrees S), thus reestablishing the STF. An enhanced eastward current band is associated with the front there, one that extends across the remainder of the South Pacific and is referred to as the South Pacific Current. In comparison with its counterparts in the other basins, which typically begin by carrying 30 Sv (Atlantic) to 60 Sv (Indian) in the upper 1000 m in their western portions before weakening to 10-15 Sv in the east, the South Pacific Current is weak. Near Chatham Rise, it starts with a transport of approximately 5 Sv, and it remains near this strength as it shifts gradually north across the basin toward South America. The current appears to split into two smaller bands in the region of 115 degrees-85 degrees W, while near 28 degrees 5, 83 degrees W it begins to turn more strongly north and becomes shallower and weaker. Potential vorticity distributions indicate that this current acts as an impediment toward the northward spreading of Antarctic Intermediate Water, But why the South Pacific Current east of New Zealand should be so much weaker than its counterparts in the other basins is not particularly clear. It may be due to the presence of New Zealand and other topographic barriers to deep now east of Australia, to the axis of the subtropical gyre in the South Pacific shifting more rapidly southward with depth than those elsewhere, thus causing greater reductions in the underlying zonal velocities, and to strong poleward eddy heat and salt fluxes in the other two basins leading to smaller cross-STF gradients in the Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 16 . pp. 133-145.
    Publication Date: 2020-08-04
    Description: The reliability of the Comprehensive Ocean–Atmosphere Dataset (COADS) Release 1a 2° monthly winds is tested by comparing it with instrumental measurements in the northwest Atlantic from 1981 to 1991. The instrumental dataset contains anemometer measurements of a very high homogeneity and quality, which were taken by six research sister ships with known anemometer heights in the northwest Atlantic. Special data processing was made with instrumental samples to provide compatibility with the COADS winds. Comparison shows overestimation of the COADS winds in the low ranges and underestimation of the strong and moderate winds. Application of the alternative equivalent Beaufort scales does not remove this bias and makes it even more pronounced. Thus, the conclusion is made that the disagreement obtained results primarily from the uncertainties of anemometer measurements in COADS, especially from the incorrect evaluation of the true wind. Instrumental data also do not indicate significant long-term interannual changes, which are pronounced in the COADS dataset for the 1980s. Some regional features of the comparison are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 29 (11). pp. 2785-2801.
    Publication Date: 2020-08-04
    Description: The Rio Grande Rise acts as a natural barrier for the equatorward flow of Antarctic Bottom Water in the subtropical South Atlantic. In addition to the Vema Channel, the Hunter Channel cuts through this obstacle and offers a separate route for bottom-water import into the southern Brazil Basin. On the occasion of the Deep Basin Experiment, a component of the World Ocean Circulation Experiment (WOCE), the expected deep flow through the Hunter Channel was directly observed for the first time by an array of moored current meters and thermistor chains from December 1992 to May 1994. Main results are (i) the Hunter Channel is, in fact, a conduit for bottom-water flow into the Brazil Basin. Our new mean transport from moored current meters [2.92 (±1.24) × 106 m3 s−1] is significantly higher than earlier estimates that were based on geostrophic calculations. (ii) During the WOCE observational period a tendency toward increased bottom-water temperatures was observed. This observation from the Hunter Channel is consistent with findings from the Vema Channel. (iii) The overflow through the Hunter Channel is highly variable and puts in perspective earlier synoptic geostrophic transport estimates
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 28 . pp. 1107-1129.
    Publication Date: 2020-08-04
    Description: On the basis of the collection of individual marine observations available from the Comprehensive Ocean–Atmosphere Data Set, major parameters of the sea state were evaluated. Climatological fields of wind waves and swell height and period, as well as significant wave height and resultant period are obtained for the North Atlantic Ocean for the period from 1964 to 1993. Validation of the results against instrumental records from National Data Buoy Center buoys and ocean weather station measurements indicate relatively good agreement for wave height and systematic biases in the visually estimated periods that were corrected. Wave age, which is important for wind stress estimates, was evaluated form wave and wind observations. The climatology of wave age indicates younger waves in winter in the North Atlantic midlatitudes and Tropics. Wave age estimates were applied to the calculations of the wind stress using parameterizations from field experiments. Differences between wave-age-based and traditional estimates are not negligible in wintertime in midlatitudes and Tropics where wave-induced stress contributes from 5% to 15% to the total stress estimates. Importance of the obtained effects for ocean circulation and climate variability is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 29 . pp. 2303-2317.
    Publication Date: 2020-08-04
    Description: A primitive equation model to study the dynamics of the Agulhas system has been developed. The model domain covers the South Atlantic and the south Indian Ocean with a resolution of ⅓° in the Agulhas region while coarser outside. It is driven by a climatology of the European Centre for Medium-Range Weather Forecasts. It is shown that the model simulates the Agulhas Current, its retroflection, and the ring shedding successfully. The model results show baroclinic anticyclonic eddies in the Mozambique Channel and east of Madagascar, which travel toward the northern Agulhas Current. After the eddies reach the current they are advected southward with the mean flow. Due to the limited numerical resolution only a few eddies reach the retroflection region without much modification. These eddies are responsible for drastic enhancement of the heat transfer from the Indian Ocean to the South Atlantic and lead to periodicities in the interoceanic heat transport of about 50 days superimposed on the seasonal variability. Combined satellite data from TOPEX/Poseidon and ERS-1 show that the observed vortices in the Mozambique Channel are comparable to those seen in the model. In contrast to this the simulated eddies east of Madagascar seem not to be well reproduced. Analyses of the energy conversion terms between the mean flow and the eddies suggest that barotropic instability plays an important role in the generation of Mozambique Channel eddies. For the generation of Agulhas rings and other eddy structures in the model the barotropic instability mechanism seems to be minor, and baroclinic instability mechanisms are more likely.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-04
    Description: Many models of the large-scale thermohaline circulation in the ocean exhibit strong zonally integrated upwelling in the midlatitude North Atlantic that significantly decreases the amount of deep water that is carried from the formation regions in the subpolar North Atlantic toward low latitudes and across the equator. In an analysis of results from the Community Modeling Effort using a suite of models with different horizontal resolution, wind and thermohaline forcing, and mixing parameters, it is shown that the upwelling is always concentrated in the western boundary layer between roughly 30° and 40°N. The vertical transport across 1000 m appears to be controlled by local dynamics and strongly depends on the horizontal resolution and mixing parameters of the model. It is suggested that in models with a realistic deep-water formation rate in the subpolar North Atlantic, the excessive upwelling can be considered as the prime reason for the typically too low meridional overturning rates and northward heat transports in the subtropical North Atlantic. A new isopycnal advection and mixing parameterization of tracer transports by mesoscale eddies yield substantial improvements in these integral measures of the circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...