ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01.01. Atmosphere
  • 2020-2022  (10)
  • 1960-1964
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2021-05-18
    Description: Anthropogenic emissions of greenhouse gases (GHGs) co-occur with emissions of these gases from volcanic and urban environments. Therefore, it remains a challenge for the scientific community to identify the contamination sources and quantify the specific contributions. Stable isotopes have many applications in different fields under geosciences, including volcanology, environmental surveying, and climatology. Isotopic surveys allow identification of photosynthetic fractionation in tree forests and gas sources in urban zones, and tracking of volcanic degassing. Thus, the stable isotopic composition of the local GHGs allows the evaluation of the environmental impacts and assists in mitigating the emissions. The present study aimed to distinguish the tropospheric sources of CO2 in the different ecosystems based on the stable isotopic composition of CO2. The study relies on field experiments performed in both volcanic and urban zones of the Mediterranean region. Experiments to identify the CO2 origins in the field were designed and conducted in the laboratory. The CO2 in the air in Palermo, the soil CO2 released at Vulcano (Aeolian Islands, Italy), and the CO2 emitted at Cava dei Selci (Rome, Italy) were selected for conducting case studies. Isotope surveying of the CO2-containing air in Palermo revealed that the CO2 content was correlated to human activity. Mobile-based measurements of carbon isotope were conducted to distinguish the different sources of CO2 at the district scale. In particular, the isotopic surveying process distinguished landfill-related CO2 emissions from the fossil fuel burning ones. The underlying geological reservoir was identified as the main source of air CO2 at Cava dei Selci. Finally, partitioning of soil CO2 enabled estimation of the geological CO2 estimation in the Vulcano Porto settled zones. The results of the present study revealed that detailed investigations on stable isotopes assist in tracking the CO2 sources and the fate of gas emissions. The fine-tuned experimental solutions assisted in broadening the research perspectives. In addition, deeper insights into the carbon cycle were obtained.
    Description: Published
    Description: 118446
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Stable isotopes ; Carbon dioxide ; Greenhouse gas emissions ; Volcanic gases ; Mediterranean region ; 01.01. Atmosphere ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-02
    Description: Quantifying natural geological sources of methane (CH4) allows to improve the assessment of anthropogenic emissions to the atmosphere from fossil fuel industries. The global CH4 flux of geological gas is, however, an object of debate. Recent fossil (14C-free) CH4 measurements in preindustrial-era ice cores suggest very low global geological emissions (~ 1.6 Tg year-1), implying a larger fossil fuel industry source. This is however in contrast with previously published bottom-up and top-down geo-emission estimates (~ 45 Tg year-1) and even regional-scale emissions of ~ 1-2 Tg year-1. Here we report on significant geological CH4 emissions from the Lusi hydrothermal system (Indonesia), measured by ground-based and satellite (TROPOMI) techniques. Both techniques indicate a total CH4 output of ~ 0.1 Tg year-1, equivalent to the minimum value of global geo-emission derived by ice core 14CH4 estimates. Our results are consistent with the order of magnitude of the emission factors of large seeps used in global bottom-up estimates, and endorse a substantial contribution from natural Earth's CH4 degassing. The preindustrial ice core assessments of geological CH4 release may be underestimated and require further study. Satellite measurements can help to test geological CH4 emission factors and explain the gap between the contrasting estimates.
    Description: Published
    Description: 4138
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: methane budget ; emission factor ; geological gas manifestation ; Lusi hydrothermal system ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-18
    Description: High resolution temperature profiles (HRTP) have been derived from measurements performed by Global Ozone Monitoring by Occultation of Stars (GOMOS) onboard ENVISAT. HRTP are derived from measurements with two fast photometers whose signal is sampled at 1 kHz, and allows investigating the role of irregularities in the density and temperature profiles, such as those associated with gravity waves. In this study high resolution temperature and density profiles measured at high latitude by GOMOS are compared with observations made with the ground-based aerosol/temperature LIDAR at Thule, Greenland. The LIDAR at Thule contributes to the Network for the Detection of Atmospheric Composition Change. The LIDAR profiles are analyzed in the height interval overlapping with GOMOS data (22-35 km), and the density and temperature profiles are obtained with 250 m vertical resolution. The comparison is focused on data collected during the 2008-2009 and 2009-2010 Arctic winters. Profiles measured within 6 hours and 500 km are selected. The profiles are classified based on spatial and temporal variability of dynamical indicators over Thule and at the GOMOS tangent height position. Several corresponding features can be identified in the GOMOS and LIDAR profiles, suggesting that the GOMOS HRTP could be used to investigate the global distribution of small scale fluctuations. As an example, two cases corresponding to inner and outer vortex conditions during the 2008-2009 winter are discussed, also in relation with the very intense sudden stratospheric warming occurred in this season.
    Description: Published
    Description: New Zealand
    Description: 5A. Ricerche polari e paleoclima
    Keywords: stratosphere ; temperature ; GOMOS ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-16
    Description: The sources and sinks of stratospheric reactive nitrogen (NOy) in the Antarctic are known only qualitatively, because of the very few measurements of NOy available in this region. As a result, the effects of stratospheric NOy short- and long-term changes on the stratospheric concentration of ozone, water vapor, and other climate-forcing agents are still uncertain. To better understand the annual cycle of polar stratospheric NOy, we estimate its concentration in the Antarctic stratosphere during part of 1993 and throughout 1995. These estimates are obtained at seven potential temperature levels, extending from 18 to 30 km of altitude, and are associated with ground-based measurements of another tracer, N2O, in order to produce NOy-N2O correlation curves that can provide insights on nitrogen sources and sinks. To estimate NOy mixing ratios, we use ground-based and satellite measurements of major NOy constituents, connected by using air parcel trajectories and supplemented by model calculations of minor contributing species for which no suitable measurements exist. All the available NOy-N2O correlation points are averaged over three representative seasonal time periods in 1993 and six periods in 1995. Results show very similar correlation curves during the late summer and the fall of 1995, and again during the early spring 1993 compared with the early and late winter of 1995, although there are large seasonal changes due to transport and to condensation of NOy onto polar stratospheric clouds. We calculate a loss from the latter process of N = (6.3 ± 2.6) 107 kg of stratospheric nitrogen in the southern polar vortex during 1995.We also compare our correlation curves with those obtained in the Antarctic stratosphere during the Atmospheric Trace Molecule Spectroscopy mission ATMOS/ATLAS-3 in November 1994, finding important similarities but also critical differences that suggest that extravortex air is generally not an adequate representation of prewinter inner vortex conditions. Calculations of NOy winter removal in the Antarctic stratosphere which have used extra-vortex measurements as a surrogate for prewinter conditions may thus have underestimated true NOy removal. Our prewinter NOy estimates in the vortex core match values obtained by atmospheric models that incorporate upper atmospheric sources of NOy, supporting the belief that such sources have a significant effect on polar stratospheric NOy.
    Description: Published
    Description: 4428
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: polar NOy ; NOy-N2O correlations ; denitrification ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-16
    Description: Many long-term monitoring sites in Antarctic regions, which deploy ground-based stratospheric remote sensors and fly radiosondes or ozonesondes on balloons, supported the Airborne Polar Experiment in September and October 1999. Support consisted of supplying data to the campaign in real time, and in some cases by increasing the frequency of measurements during the campaign. The results will strengthen scientific conclusions from the airborne measurements. But results from these sites are allowing important scientific studies of new aspects of the ozone hole in their own right, because like the aircraft and its campaign, many sites traverse the vortex edge and are close to the largest source of lee waves, or measure infrequently observed trace gases such as HNO3. Examples of such studies are the behaviour and value of NO2 in midwinter, ozone filamentation with no apparent horizontal advection, the frequency and amplitude of gravity waves over the Antarctic Peninsula, mixing in the lowest stratosphere in Antarctic spring, the mechanism and frequency of HNO3 enhancement above the ozone peak in midwinter, and trends in UV dose in southern South America.
    Description: Published
    Description: 835–845
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: ozone depletion ; APE-GAIA ; Antarctic stratosphere ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-16
    Description: We present new ground-based measurements of polar stratospheric and mesospheric CO, made with a millimeter-wave spectrometer at Thule, Greenland (76.5 N, 68.7 W). Almost daily measurements were made between 17 January and 4 March 2002 and again between 5 January and 22 February 2003. We stress here the retrieval and analysis of CO mixing ratios in the 50–80 km altitude range, though it can be monitored at lower altitudes as well. Since CO exhibits a strong positive latitude gradient from the summer to the winter pole, it is an excellent tracer for poleward transport from lower latitudes. Moreover, the mixing ratio of CO increases rapidly from 40 km to at least 100 km at midlatitudes, providing a good tracer for high-altitude vertical transport as well. Our profiles indicate that in winter near the poles the CO mixing ratio decreases above 70 km because of subsidence of air and minimal high-altitude photoproduction at high latitudes. Our data also show large variations in mixing ratio and vertical distribution, yielding a good picture of stratospheric and mesospheric dynamics-induced changes on a scale of hours to days. These observations verify that CO serves as an excellent tracer of vortex-related dynamics in the 30–80 km altitude range, where other information, particularly above 40 km, may be sparse, unreliable, or nonexistent. Our results are in general agreement with analyses of 1991–1992 Improved Stratospheric and Mesospheric Sounder (ISAMS) satellite data by Lopez-Valverde et al. [1993, 1996] and by Allen et al. [1999, 2000]. We show the contrast between CO over the summer pole and CO over the winter pole with the aid of trial observations made at the South Pole during the austral summer of 1999–2000. Our Thule data indicate that large concentrations of CO generally exist in winter just outside the vortex boundary. The large rapid variations in vertical profile that are found in our data in 2002 appear to be well correlated with vortex position in the lower stratosphere. In 2003 this correlation appeared to be much weaker, but early 2003 was also a period of vortex splitting in the Arctic on three occasions during our observation period, accompanied by generally more complex vortex dynamics.
    Description: Published
    Description: D06105
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: Arctic mesosphere ; Carbon monoxide ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-16
    Description: The multiple scattering of visible radiation produced by dense media in the atmosphere has been studied using an imaging lidar. Observations of the spatial distribution of the signal intensity in the focal plane of a Newtonian telescope are carried out by means of an intensified CCD video-camera. Preliminary measurements of echoes from tropospheric clouds show that the contribution to the total signal due to the multiple scattering is evident, and increases with cloud depth.
    Description: Published
    Description: 103-106
    Description: 5A. Ricerche polari e paleoclima
    Keywords: lidar ; multiple scattering ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-09-21
    Description: We compare differences and similarities in the annual stratospheric HNO3 cycle derived from ground‐based measurements at the South Pole during 1993 and 1995, after correcting an error in earlier published profile retrievals for 1993 which led to under estimation of mixing ratios. The data series presented here provide profiling over the range ∼16–48 km, and cover the fall‐winter‐spring cycle in the behavior of HNO3 in the extreme Antarctic with a large degree of temporal overlap. With the exception of one gap of 20 days, the combined data sets cover a full annual cycle. The record shows an increase in HNO3 above 30 km occurring about 20 days before sunset, which appears to be the result of higher altitude heterogeneous conversion of NOx as photolysis diminishes. Both years show a strong increase in HNO3 beginning about polar sunset, in a layer peaking at about 25 km, as additional NOx is heterogeneously converted to nitric acid. When temperatures drop to the polar stratospheric cloud (PSC) formation range near the end of May, gas phase HNO3 is rapidly reduced in the lower stratosphere, although at least 2–3 weeks of temperatures ≤192 K appear to be required to complete most of the gas‐phase removal at the upper end of the depletion range (22–25 km). Despite a significant difference in residual sulfate loading from the explosion of Mount Pinatubo, there appears to be little gross difference in the timing and effects of PSC formation in removing gas phase HNO3 in these 2 years, though removal may be more rapid in 1995. Incorporation of gas phase HNO3 into PSCs appears to be nearly complete up to ∼25 km by midwinter. We also see a repeat of the formation of gas phase HNO3 in the middle stratosphere in early midwinter of 1995 with about the same timing as in 1993, suggesting that this phenomenon is driven by a repetition of dynamical transport and appropriate temperatures and pressures in the polar night, and not (as has been suggested) by ion‐based heterogeneous chemistry that requires triggering by large relativistic electron fluxes. High‐altitude HNO3 production peaks during a period of ∼20 days, but appears to persist for up to ∼40 days in the 40–45 km range, ceasing well before sunrise. This HNO3 descends rapidly throughout the production period, at a rate in good agreement with theoretically determined midwinter subsidence rates. As noted in earlier studies, later warming of this region above PSC evaporation temperatures does not cause reappearance of large amounts of HNO3, indicating that most PSCs gravitationally sink out of the stratosphere before early spring. We present evidence that smaller PSCs do evaporate to ∼1 to 3.5 ppbv of HNO3 in the lower stratosphere, however, working downward from ∼25 km as temperatures rise during the late winter. There is a delay of ∼15 days after sunrise before photolysis causes significant depletion in the altitude range below ∼30 km, where subsidence has carried virtually all higher‐altitude HNO3 by polar sunrise. Some continued subsidence and photolysis combine to keep mixing ratios less than ∼5 ppbv below 30 km until the final breakdown of the vortex in November brings larger amounts of HNO3 with air from lower latitudes.
    Description: Published
    Description: 17739-17750
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: ozone depletion ; HNO3 ; Antarctic stratosphere ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-09-21
    Description: [1] We present the first intercomparison between the two most comprehensive records of gas‐phase HNO3 profiles in the Antarctic stratosphere, covering the greater part of 1993 and 1995. We compare measurements by the Stony Brook Ground‐Based Millimeter‐wave Spectrometer (GBMS) at the South Pole with Version 5 HNO3 data from the Microwave Limb Sounder (MLS) aboard the Upper Atmospheric Research Satellite. Trajectory tracing was used to select MLS measurements in the 70°–80°S latitude band that sampled air observed by the GBMS during passage over the Pole. When temperatures were near the HNO3 condensation range, additional screening was performed to select MLS measurements that sampled air parcels within 1.5 K of the temperature they experienced over the Pole. Quantitative comparisons are given at 7 different potential temperature levels spanning the range ∼19–30 km. Agreement between the data sets is quite good between 465 and 655 K (∼20–25 km) during a large fraction of the year. Agreement is best during winter and spring, when seasonally averaged differences are generally within 1 ppbv below ∼25 km. At higher altitudes, and during summer and fall, the agreement becomes worse, and GBMS measurements can exceed MLS values by more than 3 ppbv. We provide evidence that differences occurring in the lower stratosphere during fall are due to lack of colocation between the two data sets during a period of strong poleward gradients in HNO3. Remaining discrepancies between GBMS and MLS V5 HNO3 measurements are thought to be due to instrumental or retrieval biases.
    Description: Published
    Description: id 4809
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: MLS ; Nitric acid ; polar stratosphere ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-24
    Description: Quantifying subaerial fluxes of CO2 is key in a diverse range of applications, including carbon capture and storage sites, emissions from urban areas and industrial sites such as oil refineries, or forecasting volcanic eruptions. All of these have one thing in common: they represent spatially extended sources with a generally unknown spatial distribution of CO2 concentration. The conventional approach to measure CO2 fluxes is to first measure CO2 concentrations in situ at several points and estimate 2D CO2 concentration profiles. Along with the plume transport speed, the concentration profiles can then be used to compute CO2 fluxes. Active remote sensing of CO2 concentrations offers crucial advantages over in situ probing, including a spatially comprehensive measurement, a safe measurement distance, and faster acquisition, which enables real-time monitoring. This makes it also a viable complement or alternative to fence-line monitoring at industrial sites. In the last few years, technology has advanced sufficiently to allow for the realization of robust and portable remote sensing platforms that are relatively inexpensive and user friendly. Within the frameworks of the European Research Council CO2Volc and proof-of-concept CarbSens projects, such a remote sensing platform has been developed to probe CO2 emissions. It may be operated from a fixed location on the ground, from moving platforms (e.g., cars), or be airborne. The kit was used to probe CO2 concentrations and perform a feasibility test to obtain a tomographic 2D image of the subaerial CO2 distribution inside the Solfatara crater, part of arguably the most hazardous volcano in the world: Campi Flegrei near Naples, Italy. The methodology could be applied directly to industrial applications, including quantifying fugitive CO2 at storage and industrial sites. An unmanned aerial vehicle portable kit is envisaged.
    Description: Published
    Description: 306-313
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: 04. Solid Earth ; 04.08. Volcanology ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...