ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Institut für Meereskunde
  • Inter Research
  • 2015-2019  (3)
  • 1950-1954
  • 2016  (3)
  • 1
    Publication Date: 2021-04-23
    Description: Global climate change involves an increase in oceanic CO2 concentrations as well as thermal stratification of the water column, thereby reducing nutrient supply from deep to surface waters. Changes in inorganic carbon (C) or nitrogen (N) availability have been shown to affect marine primary production, yet little is known about their interactive effects. To test for these effects, we conducted continuous culture experiments under N limitation and exposed the bloomforming dinoflagellate species Scrippsiella trochoidea and Alexandrium fundyense (formerly A. tamarense) to CO2 partial pressures (pCO(2)) ranging between 250 and 1000 mu atm. Ratios of particulate organic carbon (POC) to organic nitrogen (PON) were elevated under N limitation, but also showed a decreasing trend with increasing pCO(2). PON production rates were highest and affinities for dissolved inorganic N were lowest under elevated pCO(2), and our data thus demonstrate a CO2-dependent trade-off in N assimilation. In A. fundyense, quotas of paralytic shellfish poisoning toxins were lowered under N limitation, but the offset to those obtained under N-replete conditions became smaller with increasing pCO(2). Consequently, cellular toxicity under N limitation was highest under elevated pCO(2). All in all, our observations imply reduced N stress under elevated pCO(2), which we attribute to a reallocation of energy from C to N assimilation as a consequence of lowered costs in C acquisition. Such interactive effects of ocean acidification and nutrient limitation may favor species with adjustable carbon concentrating mechanisms and have consequences for their competitive success in a future ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Previous bioassays conducted in the oligotrophic Atlantic Ocean identified availability of inorganic nitrogen (N) as the proximate limiting nutrient control of primary production, but additionally displayed a synergistic growth effect of combined N and phosphorus (P) addition. To classify conditions of nutrient limitation of coastal phytoplankton in the tropical ocean, we performed an 11 d nutrient-enrichment experiment with a natural phytoplankton community from shelf waters off northwest Africa in shipboard mesocosms. We used pigment and gene fingerprinting in combination with flow cytometry for classification and quantification of the taxon-specific photoautotrophic response to differences in nutrient supply. The developing primary bloom was dominated by diatoms and was significantly higher in the treatments receiving initial N addition. The combined supply of N and P did not induce a further increase in phytoplankton abundance compared to high N addition alone. A secondary bloom during the course of the experiment again displayed higher primary producer standing stock in the N-fertilized treatments. Bacterial abundance correlated positively with phytoplankton biomass. Dominance of the photoautotrophic assemblage by N-limited diatoms in conjunction with a probable absence of any P-limited phytoplankton species prevented an additive effect of combined N and P addition on total phytoplankton biomass. Furthermore, after nutrient exhaustion, dinitrogen (N-2)-fixing cyanobacteria succeeded the bloom-forming diatoms. Shelf waters in the tropical eastern Atlantic may thus support growth of diazotrophic cyanobacteria such as Trichodesmium sp. subsequent to upwelling pulses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Multiple investigators often generate data from seabed images within a single image set to reduce the time burden, particularly with the large photographic surveys now available to ecological studies. These data (annotations) are known to vary as a result of differences in investigator opinion on specimen classification and of human factors such as fatigue and cognition. These variations are rarely recorded or quantified, nor are their impacts on derived ecological metrics (density, diversity, composition). We compared the annotations of 3 investigators of 73 megafaunal morphotypes in ~28 000 images, including 650 common images. Successful annotation was defined as both detecting and correctly classifying a specimen. Estimated specimen detection success was 77%, and classification success was 95%, giving an annotation success rate of 73%. Specimen detection success varied substantially by morphotype (12-100%). Variation in the detection of common taxa resulted in significant differences in apparent faunal density and community composition among investigators. Such bias has the potential to produce spurious ecological interpretations if not appropriately controlled or accounted for. We recommend that photographic studies document the use of multiple annotators and quantify potential inter-investigator bias. Randomisation of the sampling unit (photograph or video clip) is clearly critical to the effective removal of human annotation bias in multiple annotator studies (and indeed single annotator works).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...