ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2009-09-17
    Beschreibung: The New Siberian Islands comprise De Long Islands, Anjou Islands, and Lyakhov Islands. Early Paleozoic, Mesozoic and Cenozoic sediments and igneous rocks are known on the De Long Islands. Cambrian slate, siltstone, mudstone and silicified limestone occur on Bennett Island. Ordovician volcanogenic turbidites, lavas, and small intrusions of andesite-basalt, basalt, dolerite, and porphyritic diorite were mapped on Henrietta Island. The igneous rocks are of calc-alkaline island arc series. The Ordovician age of the sequence was defined radiometrically. Early Paleozoic strata were faulted and folded presumably in the Caledonian time. Early Cretaceous sandstone and mudstone are known on Bennett Island. They are overlain by a 106–124 Ma basalt unit. Cenozoic volcanics are widespread on the De Long Islands. Zhokhov Island is an eroded stratovolcano. The volcanics are mostly of picrite-olivine type and limburgite. Radiometric dating indicates Miocene to Recent ages for Cenozoic volcanism. On the Anjou islands Lower-Middle Paleozoic strata consist of carbonates, siliciclastics, and clay. A Northwest-southeast syn-sedimentary facies zonation has been reconstructed. Upper Paleozoic strata are marine carbonate, clay and siliciclastic facies. Mudstone and clay predominate in the Triassic to Upper Jurassic section. Aptian-Albian coal bearing deposits uconformably overlap lower strata indicating Early Cretaceous tectonism. Upper Cretaceous units are mostly clay and siltstone with brown coal strata resting on Early Cretaceous weathered rhyolite. Cenozoic marine and nonmarine silisiclastics and clay rest upon the older units with a transgressive unconformity including a weathering profile in the older rocks. Manifestations of Paleozoic and Triassic mafic and Cretaceous acidic magmatism are also found on these islands. The pre-Cretaceous structure of the Anjou islands is of a block and fold type Late Cimmerian in age followed by faulting in Cenozoic time. The Lyakhov islands are located at the western end of the Late Cimmerian South Anyui suture. Sequences of variable age, composition, and structural styles are known on the Lyakhov Islands. These include an ancient metamorphic sequence, Late Paleozoic ophiolitic sequence, Late Mesozoic turbidite sequence, Cretaceous granites, and Cenozoic sediments. Fold and thrust imbricate structures have been mapped on southern Bol'shoi Lyakhov Island. North-northwestern vergent thrusts transect the Island and project offshore. Open folds of Jurassic–Early Cretaceous strata are characteristic of Stolbovoi and Malyi Lyakhov islands. Geology of the New Siberian Islands supports the concept of a circum Arctic Phanerozoic fold belt. The belt is comprised of Caledonian, Ellesmerian, Early Cimmerian and Late Cimmerian fold systems, manifested in many places on the mainland and on islands around the Arctic Ocean. Knowledge of the geology of the New Siberian Islands has been used to interpret anomalous gravity and magnetic field maps and Multi Channel Seismic (MCS) lines. Two distinguishing structural stages are universally recognized within the offshore sedimentary cover which correlate with the onshore geology of the New Siberian Islands. Dating of the upper structural stage and constituent seismic units is based on structural and stratigraphic relationships between Late Mesozoic and Cenozoic units in the archipelago. The Laptev Sea–western East Siberian Sea seismostratigraphic model for the upper structural stage has much in common with the seismostratigraphic model in the American Chukchi Sea.
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2009-09-17
    Beschreibung: Strikingly similar Late Mesoproterozoic stratigraphic sequences and correlative U-Pb detrital-zircon ages may indicate that the Sette Daban region of southeastern Siberia and the Death Valley region of southwestern North America were formerly contiguous parts of a Grenville foreland basin. The Siberian section contains large numbers of detrital zircons that correlate with Grenville, Granite-Rhyolite, and Yavapai basement provinces of North America. The sections in both Siberia and Death Valley exhibit west-directed thrust faults that may represent remnants of a Grenville foreland thrust belt. North American detrital-zircon components do not occur in Siberian samples above a ~600 Ma breakup unconformity, suggesting that rifting and continental separation blocked transfer of clastic sediment between the cratons by 600 Ma. Faunal similarities suggest, however, that the two cratons remained within the breeding ranges of Early Cambrian trilobites and archeocyathans.
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2009-09-17
    Beschreibung: The Pevek region of Arctic Russia provides excellent beach cliff exposure of sedimentary and igneous rocks that yield detailed information on the nature, progression and timing of structural events in this region. Regional folding and thrust faulting, with the development of a south-dipping axial plane cleavage/foliation developed during N-S to NE-SW directed shortening and formation of the Chukotka-Anyui fold belt. This deformation involves strata as young as Valanginian (136–140 Ma, Gradstein et al., 2004). Fold-related structures are cut by intermediate to silicic batholiths, plutons and dikes of Cretaceous age. Reported K-Ar whole rock and mineral ages on the granitoids range from 144 to 85 Ma, but to the south, more reliable U-Pb zircon ages on compositionally similar plutons yield a much narrower age range of ~120–105 Ma (Miller et al., this volume) and a pluton in Pevek yields a U-Pb age on zircon of 108.1±1.1 Ma with evidence for inheritance of slightly older 115 Ma zircons. Magmas were intruded during an episode of E-W to ENE-WSW directed regional extension based on the consistent N-S to NNW-SSE orientation of over 800 mapped dikes and quartz veins. Analysis of small-offset faults and slickensides yield results compatible with those inferred from the dikes. Younger tectonic activity across this region is minor and the locus of magmatic activity moved southward towards the Pacific margin as represented by the
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2009-09-17
    Beschreibung: A paleomagnetic study was carried out on Paleogene sedimentary rocks from Bering Island, Komandorsky islands, located at the far western end of the Aleutian Island Arc. The age of these sediments has been debated at length, but the combination of magnetostratigraphy with the fossil record indicates that the base of the section is of early Eocene (approximately 55 Ma) and the top latest Eocene age. Paleomagnetic data were obtained from 260 samples from 60 individual bedding units. The combined data show a clockwise rotation R=26.3°±8.5°, F=8.1°±2.5° with respect to the North American Plate and R=38°±8.8°, F=8.7°±2.7° with respect to the Eurasian Plate. They also show a shallowing of the inclination which yields a paleolatitude of 53°, 12° south of its expected latitude. The shallowing may have a component due to compaction, but the wide variation in sampled lithologies, combined with internal consistency of the data set, would argue against the shallowing being significant. To compare these data with other Aleutian Arc data we compiled a comprehensive survey of all available data sets. Out of these we selected four islands for which the data passed basic reliability criteria, namely Umnak, Amlia, Amchitka and Medny islands. All four showed significant clockwise rotation with respect to both North American and Eurasian polar wander paths. Several mechanisms can generate the observed rotation, ranging from block rotation driven by oblique relative motion of the Pacific plate, through lateral transport along the curve of the arc, to whole-arc rotation about its eastern end. The distribution and age spread of the rotation data are insufficient to discriminate between mechanisms, but it seems likely that different mechanism may have operated at different times and in different locations.
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2009-09-17
    Beschreibung: The Cretaceous granitoid complexes of the Eastern Taigonos and the Prybrezhny Taigonos belts (southern part of the Taigonos Peninsula), Tanyurer pluton of the Okhotsk-Chukotka volcanic belt, and the Peekiney, Moltykan, and Telekay plutons of the Chaun tectonic zone are discussed in relation to their structural position, petrography, rock and mineral chemistry and physicochemical conditions of melt crystallization. These granitoid plutons were generated through melting of a compositionally heterogeneous crustal source, with direct contribution from mafic melts produced in the mantle wedge above active or extinct Benioff zones. Variations of the trace-element composition of granitoids are controlled to a greater extent by local compositional peculiarities of the source regions than by the geodynamic regime as such. The final crystallization of these plutons occurred at comparatively shallow depths, between 1–2 and 6–7 km, in a temperature interval of 700–770°C. The depth of emplacement of the bodies decreases with increasing distance from the areas with oceanic and transitional type crust, as does the degree of incompatible element enrichment of the mantle and crustal sources of melts. Variations in fo2 values at the late stages of crystallization of the plutons reach 3–4 orders of magnitude, exceeding the limits of the quartz-fayalite-magnetite (QFM) and nickel-nickel oxide (NNO) buffer equilibria, which likely results from local variations of the source composition.
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2009-09-17
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2009-09-17
    Beschreibung: The study area is part of the Anyui subterrane of the Chukotka microplate, a key element in the evolution of the Amerasia Basin, located in Western Chukotka, Northeast Russia. The subterrane contains variably deformed, folded and cleaved rhythmic Triassic terrigenous deposits which represent the youngest stage of widespread marine deposition which form three different complexes: Lower-Middle Triassic, Upper Triassic (Carnian) and Upper Triassic (Norian). All of the complexes are represented by rhythmic interbeds of sandstone, siltstone and mudstone. Macrofaunas are not numerous, and in some cases deposits are dated by analogy to, or by their relationship with, other units dated with macrofaunas. The deposits are composed of pelagic sediments, low-density flows, high-density flows, and shelf facies associations suggesting that sedimentation was controlled by deltaic progradation on a continental shelf and subsequent submarine fan sedimentation at the base of the continental slope. Petrographic study of the mineral composition indicates that the sandstones are lithic arenites. Although the Triassic sandstones appear similar in outcrop and by classification, the constituent rock fragments are of diverse lithologies, and change in composition from lower grade metamorphic rocks in the Lower-Middle Triassic to higher grade metamorphic rocks in the Upper Triassic. This change suggests that the Triassic deposits represent an unroofing sequence as the source of the clastic material came from more deeply buried rocks with time.
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2009-09-17
    Beschreibung: A seismic swarm lasting over two years occurred near the village of Neshkan, Chukotka, far northeastern Russia, beginning with a ML, 4.2 (4.1 mb) earthquake on 9 December 2002. The swarm generated considerable anxiety among the local populace and authorities. Two temporary seismic stations were deployed during the latter part of September 2003, and recorded over 150 events with magnitudes up to 3.0. Eighteen locatable events appear to form a northeast striking linear trend, parallel to other seismicity trends in Chukotka, extending 20 km to the southwest from the village. We interpret this trend as a previously unknown fault. A small pond located ~1 km west of the village drained and some apparent surface deformation was observed over the course of the earthquake sequence. Relocation of historic seismicity in the region shows that a magnitude 6.0 in 1996 may have ruptured an adjacent fault segment. Other, less well located but larger, teleseismic events earlier in the 20th century may also have occurred on or near this fault. The seismicity is consistent a proposed region of transtension along the northern boundary of a Bering plate.
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2009-09-17
    Beschreibung: U-Pb isotopic dating of seven granitoid plutons and associated intrusions from the Bilibino region (Arctic Chukotka, Russia) was carried out using the SHRIMP-RG. The crystallization ages of these granitoids, which range from approximately 116.9±2.5 to 108.5±2.7 Ma, bracket two regionally significant deformational events. The plutons cut folds, steep foliations and thrust-related structures related to sub-horizontal shortening at lower greenschist facies conditions (D1), believed to be the result of the collision of the Arctic Alaska-Chukotka microplate with Eurasia along the South Anyui Zone (SAZ). Deformation began in the Late Jurassic, based on fossil ages of syn-orogenic clastic strata, and involves strata as young as early Cretaceous (Valanginian) north of Bilibino and as young as Hauterivian-Barremian, in the SAZ. The second phase of deformation (D2) is developed across a broad region around and to the east of the Lupveem batholith of the Alarmaut massif and is interpreted to be coeval with magmatism. D2 formed gently-dipping, high-strain foliations (S2). Growth of biotite, muscovite and actinolite define S2 adjacent to the batholith, while chlorite and white mica define S2 away from the batholith. Sillimanite (± andalusite) at the southeastern edge the Lupveem batholith represent the highest grade metamorphic minerals associated with D2. D2 is interpreted to have developed during regional extension and crustal thinning. Extension directions as measured by stretching lineations, quartz veins, boudinaged quartz veins is NE-SW to NW-SE. Mapped dikes associated with the plutons trend mostly NW-SE and indicate NE-SW directed extension. 40Ar/39Ar ages from S2 micas range from 109.3±1.2 to 103.0±1.8 Ma and are interpreted as post-crystallization cooling ages following a protracted period of magmatism and high heat flow. Regional uplift and erosion of many kilometers of cover produced a subdued erosional surface prior to the eruption of volcanic rocks of the Okhotsk-Chukotka volcanic belt (OCVB) whose basal units (~87 Ma) overlie this profound regional unconformity. A single fission track age on apatite from granite in the Alarmaut massif yielded an age of 90±11 Ma, in good agreement with this inference.
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2009-09-17
    Beschreibung: Geochronologic and structural data from the terranes of the South Anyui suture zone record a protracted deformational history before, during and after an Early Cretaceous collision of the passive margin of the Chukotka-Arctic Alaska continental block with the active continental margin of the North Asian continent. Preceding this collision, the island arc complexes of the Yarakvaam terrane on the northern margin of the North Asian craton record Early Carboniferous to Neocomian ages in ophiolite, sedimentary, and volcanic rocks. Triassic to Jurassic amphibolites constrain the timing of subduction and intraoceanic deformation along this margin. The protracted (Neocomian to Aptian) collision of the Chukotka passive margin with the North Asian continent is preserved in a range of structural styles including first north verging folding, then south verging folding, and finally late collisional dextral strike slip motions which likely record a change from orthogonal collision to oblique collision. Due to this collision, the southern passive margin of Chukotka was overthrust by tectonic nappes composed of tectono-stratigraphic complexes of the South Anyui terrane. Greenschists with ages of 115–119 Ma are related to the last stages of this collision. The postcollisional orogenic stage (Albian to Cenomanian) is characterized by sinistral strike slip faults and an extensional environment.
    Print ISSN: 1868-4556
    Digitale ISSN: 1868-4564
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...