ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1,613,906)
  • 1990-1994  (1,577,774)
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Grobe, Hannes; Mackensen, Andreas; Hubberten, Hans-Wolfgang; Spieß, Volkhard; Fütterer, Dieter K (1990): Stable isotope record and late quaternary sedimentation rates at the Antarctic continental margin. In: Bleil, U & Thiede, J (eds.), Geological History of the Polar Oceans - Arctic versus Antarctic, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, Boston, London, 539-571, hdl:10013/epic.11660.d001
    Publication Date: 2024-06-26
    Description: Four cores from the Antarctic continental margin located between 50 and 200 km from the present-day ice shelf edge, were selected for sedimentological and mass spectrometer analysis. The first stable isotope records of the Southern Polar Ocean can be correlated in detail with global isotope stratigraphy. Together with magnetostratigraphic, sedimentological and micropaleontological data, the record provides stratigraphic and paleoceanographic information back to the Jaramillo subchron (910 kyr). Although the isotope values have been altered by diagenetic processes in the sediments, which are poor in carbonate, an interpretation is possible via correlation with the sedimentological parameters. Oxygen isotope data give indications for a meltwater spike at the beginning of interglacials, when large scale melting of parts of the ice shelves took place. The synchronous record of the benthic and planktonic d13C-signals reflect continuous bottom water formation also during glacials. Primary productivity was strictly reduced during glacials due to continuous ice coverage in the Weddell Sea. The climatic improvement at the beginning of an interglacial is associated with peak values in biologic activity lasting for about 15 kyr. During one climatic cycle, mean sedimentation rates at the continental margin decrease with increasing distance from the continent from 5.2 to 1.3 cm/kyr. Maximum sedimentation rates of 25 cm/kyr at the beginning of an interglacial down to 0.6 cm/kyr during glacial periods have been calculated. The rate is mainly controlled by movements of the ice shelf edge and ice rafting.
    Keywords: ANT-IV/3; Atka Bay; AWI_Paleo; Gravity corer (Kiel type); Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS08; PS08/365; PS08/374; PS08/486; PS1387-3; PS1394-4; PS1431-1; SL
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Esper, Oliver; Zonneveld, Karin A F; Höll, Christine; Karwath, Britta; Schneider, Ralph R; Vink, Annemiek; Weise-Ihlo, Ilka; Willems, Helmut (2000): Reconstruction of palaeoceanographic conditions in the South Atlantic Ocean at the last two Terminations based on calcareous dinoflagllate cysts. International Journal of Earth Sciences, 88(4), 680-693, https://doi.org/10.1007/s005310050297
    Publication Date: 2024-06-26
    Description: Despite the increasing interest in the South Atlantic Ocean as a key area of the heat exchange between the southern and the northern hemisphere, information about its palaeoceanographic conditions during transitions from glacial to interglacial stages, the so-called Terminations, are not well understood. Herein we attempt to increase this information by studying the calcareous dinoflagellate cysts and the shells of Thoracosphaera heimii (calcareous cysts) of five Late Quaternary South Atlantic Ocean cores. Extremely high accumulation rates of calcareous cysts at the Terminations might be due to a combined effect of increased cyst production and better preservation as result of calm, oligotrophic conditions in the upper water layers. Low relative abundance of Sphaerodinella albatrosiana compared with Sphaerodinella tuberosa in the Cape Basin may be the result of the relatively colder environmental conditions in this region compared with the equatorial Atlantic Ocean with high relative abundance of S. albatrosiana. Furthermore, the predominance of S. tuberosa during glacials and interglacials at the observed site of the western Atlantic Ocean reflects decreased salinity in the upper water layer.
    Keywords: Brazil Basin; Cape Basin; Equatorial Atlantic; GeoB; GeoB1105-4; GeoB1117-2; GeoB1214-1; GeoB2204-2; GeoB3603-2; Geosciences, University of Bremen; Gravity corer (Kiel type); M12/1; M23/3; M34/1; M9/4; Meteor (1986); SFB261; SL; South Atlantic in Late Quaternary: Reconstruction of Budget and Currents; Southern Cape Basin
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Grobe, Hannes; Mackensen, Andreas (1992): Late Quaternary climatic cycles as recorded in sediments from the Antarctic continental margin. In: Kennett, James P & Warnke, Detlef A (eds.), The Antarctic Paleoenvironment: a perspective on Global Change, Antarctic Research Series, American Geophysical Union, DOI:10.1029/AR056p0349, 56, 349-376, https://doi.org/10.1029/AR056p0349
    Publication Date: 2024-06-26
    Description: To reveal the late Quaternary paleoenvironmental changes at the Antarctic continental margin, we test a lithostratigraphy, adjusted to a stable isotope record from the eastern Weddell Sea. The stratigraphy is used to produce a stacked sedimentological data set of eleven sediment cores. We derive a general model of glacio marine sedimentation and paleoenvironmental changes at the East Antarctic continental margin during the last two climatic cycles (300 kyr). The sedimentary processes considered include biological productivity, ice-rafting, current transport, and gravitational downslope transport. These processes are controlled by a complex interaction of sea-level changes and paleoceanographic and paleoglacial conditions in response to changes of global climate and local insolation. Sedimentation rates are mainly controlled by ice-rafting which reflects mass balance and behaviour of the Antarctic ice sheet. The sedimentation rates decrease with distance from the continent and from interglacial to glacial. Highest rates occur at the very beginning of interglacials, i.e. of oxygen isotope events 7.5, 5.5, and 1.1, these being up to five times higher than during glacials. The sediments can be classified into five distinct facies and correlated to different paleoenvironments: at glacial terminations (isotope events 8.0, 6.0, and 2.0), the Antarctic cryosphere adjusts to new climatic conditions. The sedimentary processes are controlled by the rise of sea level, the destruction of ice shelves, the retreat of sea-ice and the recommenced feeding of warm North Atlantic Deep Water (NADW) to the Circumpolar Deep Water (CDW). During peak warm interglacial periods (at isotope events 7.5, 7.3, 5.5., and 1.1), the CDW promotes warmer surface waters and thus the retreat of sea-ice which in turn controls the availability of light in surface waters. At distinct climatic thresholds local insolation might also influence sea-ice distribution. Primary productivity and bioturbation increase, the CCD rises and carbonate dissolution occurs in slope sediments also in shallow depth. Ice shelves and coastal polynyas favour the formation of very cold and saline Ice Shelf Water (ISW) which contributes to bottom water formation. During the transition from a peak warm time to a glacial (isotope stages 7.2-7.0, and 5.4-5.0) the superimposition of both intense ice-rafting and reduced bottom currents produces a typical facies which occurs with a distinct lag in the time of response of specific sedimentary processes to climatic change. With the onset of a glacial (at isotope events 7.0 and 5.0) the Antarctic ice sheet expands due to the lowering of sea-level with the extensive glaciations in the northern Hemisphere. Gravitational sediment transport becomes the most active process, and sediment transfer to the deep sea is provided by turbidity currents through canyon systems. During Antarctic glacial maxima (isotope stages between 7.0-6.0, and 5.0-2.0) the strongly reduced input of NADW into the Southern Ocean favours further advances of the ice shelves far beyond the shelf break and the continous formation of sea ice. Below ice shelves and/or closed sea ice coverage contourites are deposited on the slope.
    Keywords: ANT-I/2; ANT-III/3; ANT-IV/3; ANT-V/4; ANT-VI/3; Atka Bay; AWI_Paleo; Camp Norway; gcmd1; Giant box corer; GKG; Gravity corer (Kiel type); Kapp Norvegia; MUC; MultiCorer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS01; PS01/132; PS06/246; PS06 SIBEX; PS08; PS08/333; PS08/356; PS08/361; PS08/364; PS08/366; PS08/367; PS08/368; PS08/371; PS08/374; PS08/486; PS10; PS10/688; PS10/694; PS1006-1; PS12; PS12/302; PS12/492; PS12/536; PS1265-1; PS1367-2; PS1380-1; PS1380-3; PS1385-3; PS1386-1; PS1386-2; PS1388-1; PS1388-3; PS1389-1; PS1389-3; PS1390-1; PS1390-3; PS1392-1; PS1394-1; PS1394-4; PS1431-1; PS1479-1; PS1479-2; PS1481-3; PS1591-1; PS1640-1; PS1640-2; PS1648-1; SL; timesliceagemodel
    Type: Dataset
    Format: application/zip, 49 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Koç, Nalân; Labeyrie, Laurent D; Manthé, Sandrine; Flower, Benjamin P; Hodell, David A; Aksu, Ali E (2001): The last occurrence of Proboscia curvirostris in the North Atlantic marine isotope stages 9-8. Marine Micropaleontology, 41(1-2), 9-23, https://doi.org/10.1016/S0377-8398(00)00054-2
    Publication Date: 2024-06-26
    Description: Well-preserved diatoms are present in high sedimentation rate Pleistocene cores retrieved on Ocean Drilling Program (ODP) Legs 151, 152, 162 and IMAGES cruises of R/V Marion Dufresne from the North Atlantic. Investigation of the stratigraphic occurrence of diatom species shows that the youngest diatom event observed in the area is the last occurrence (LO) of Proboscia curvirostris (Jousé) Jordan and Priddle. P. curvirostris is a robust species that can easily be identified in the sediments, and therefore can be a practical biostratigraphic tool. We have mapped its areal distribution, and found that it stretches from 40°N to 80°N in the North Atlantic. Further, we have correlated the LO P. curvirostris to the oxygen isotope records of six cores to refine the age of this biostratigraphic event. The extinction of P. curvirostris is latitudinally diachronous through Marine Isotope Stages (MIS) 9 to 8 within the North Atlantic. This is closely related to the paleoceanography of the area. P. curvirostris first disappeared within interglacial MIS 9 (324 ka) from the northern areas that are most sensitive to climatic forcing, like the East Greenland current and the sea-ice margin. It survived in mid-North Atlantic until the conditions of the MIS 8 (glaciation) became too severe (260 ka). In the North Pacific at ODP Site 883 the LO P. curvirostris falls within MIS 8. The observed overlap in age between the North Atlantic and the North Pacific strongly suggests that the extinction of P. curvirostris is synchronous between these oceans.
    Keywords: 152-919A; 162-983A; CALYPSO; Calypso Corer; DRILL; Drilling/drill rig; Greenland Sea; Iceland; IMAGES I; Joides Resolution; Leg152; Leg162; Marion Dufresne (1995); MD101; MD952014; MD95-2014; MD952027; MD95-2027; Newfoundland Slope; Ocean Drilling Program; ODP; South Atlantic Ocean
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Becquey, Sabine; Gersonde, Rainer (2003): A 0.55-Ma paleotemperature record from the Subantarctic zone: Implications for Antarctic Circumpolar Current development. Paleoceanography, 18(1), 1014, https://doi.org/10.1029/2000PA000576
    Publication Date: 2024-06-26
    Description: Estimates of summer sea surface temperatures (SSSTs) derived from planktic foraminiferal associations using the Modern Analog Technique and combined with isotopic analyses and determination of ice-rafted debris, mirror the Pleistocene evolution of the planktic Subantarctic surface waters in the Atlantic Ocean. The SSSTs indicate that the isotherms that define the modern polar front zone and Subantarctic front, were located at more northerly latitudes (up to 7°) during most of the investigated period, which covers the past 550 kyr. Exceptions are during climatic optima in the early Holocene, at marine isotope stages (MIS) 5.5, 7.1, 7.5, 9.3, and presumably during MIS 11.3 when SSSTs exceeded modern values by 1 –5°C. The close similarity between the SSST and the Vostok temperature indicates strong regional temperature correlation. Both records show that MIS 9.3 was the warmest period during the last 420 kyr whereas SSSTs obtained for MIS 11.3 are overestimated due to strong carbonate dissolution. Spectral analysis corroborates that the initiation of warming in southern high latitudes heralds the start of deglaciation on the Northern Hemisphere.
    Keywords: Agulhas Ridge; ANT-XI/2; AWI_Paleo; KL; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Piston corer (BGR type); Polarstern; PS2489-2; PS2489-2TC; PS28; PS28/256; TC; Trigger corer
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bühring, Christian (2001): East Asian Monsoon variability on orbital- and millennial-to-sub-decadal time scales. PhD Thesis, Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel, Germany, 164 pp, urn:nbn:de:gbv:8-diss-5231
    Publication Date: 2024-06-26
    Description: Sedimentological, geochemical and paleomagnetic records were employed to reconstruct the history of East Asian Monsoon variability in the South China Sea (SCS) on orbital- and millennial-to-sub-decadal time scales. A detailed magnetostratigraphy for the southern central SCS was established as well as a stable isotope stratigraphy for ODP Site 1144 for the last 1.2 million years in the northern South China Sea. Furthermore a volcanic tephra layer from the southern central SCS could be identified as the Youngest Toba Ash, which thus re-presents an important age marker and was used to reconstruct paleo wind directions during the eruption 74 ka. Special attention was paid to the high- and ultrahigh-frequency variability in the last glacial-interglacial cycle and the Holocene, and to a precise age control of climate changes in general.
    Keywords: 184-1144; 184-1144A; COMPCORE; Composite Core; DRILL; Drilling/drill rig; GIK/IfG; GIK17940-2; Gravity corer (Kiel type); Institute for Geosciences, Christian Albrechts University, Kiel; Joides Resolution; Leg184; MONITOR MONSUN; SL; SO95; Sonne; South China Sea
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Heilemann, Kristina (2000): Hydrodynamische Änderungen des Mittelmeerausstromwassers und deren Abbildung in den Sedimenten des Iberischen Kontinentalhangs. PhD Thesis, Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel, Germany, 88 pp, urn:nbn:de:gbv:8-diss-4229
    Publication Date: 2024-06-26
    Description: Climatic changes cause alterations in circulation patterns of the world oceans. The highly saline Mediterranean Outflow Water (MOW), built within the Mediterranean Sea crosses the Strait of Gibraltar in westerly directions, turning north-westward to stick to the Iberian Slope within 600-1500m water depths. Circulation pattern and current speed of the MOW are strongly influenced by climatically induced variations and thus control sedimentation processes along the South- and West - Iberian Continental Slope. Sedimentation characteristics of the investigated area are therefore suitable to reconstruct temporal hydrodynamic changes of the MOW. Detailed investigations on the silt-sized grain distribution, physical properties and hydroacoustic data were performed to recalculate paleo-current-velocities and to understand the sedimentation history in the Golf of Cadiz and the Portuguese Continental Slope. A time model based on d18Odata and 14C-datings of planktic foraminifera allowed the stratigraphical classification of the core material and thus the dating of the current induced sediment layers showing the variations of paleo-current intensities. The evaluation and interpretation of the gathered data sets enabled us to reconstruct lateral and temporal sedimentation patterns of the MOW for the Holocene and the late Pleistocene, back to the Last Glacial Maximum (LGM).
    Keywords: GEOMAR; Giant box corer; GKG; Gravity corer (Kiel type); Gravity corer (Russian type); Helmholtz Centre for Ocean Research Kiel; M39/1; M39/1_02-5; M39/1_02-6; M39/1_03-3; M39/1_04-3; M39/1_08-3; M39/1_15-3; M39/1_16-3; M39/1_17-3; M39/1_18-2; M39/1_22-4; M39/1_29-4; M39/1_29-7; M39/1_29-8; M39/1_36-2; M39/1_36-4; M39/1_37-1; M39/1_58-2; M39/1_59-2; M39008-3; M39016-3; M39017-3; M39022-4; M39029-4; M39029-7; M39029-8; M39036-2; M39058-2; M39059-2; Meteor (1986); RGC; SL
    Type: Dataset
    Format: application/zip, 18 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cortese, Giuseppe; Abelmann, Andrea (2002): Radiolarian-based paleotemperatures during the last 160 kyrs at ODP Site 1089 (Southern Ocean, Atlantic Sector). Palaeogeography, Palaeoclimatology, Palaeoecology, 182(3-4), 259-286, https://doi.org/10.1016/S0031-0182(01)00499-0
    Publication Date: 2024-06-26
    Description: Two cores, Site 1089 (ODP Leg 177) and PS2821-1, recovered from the same location (40°56'S; 9°54'E) at the Subtropical Front (STF) in the Atlantic Sector of the Southern Ocean, provide a high-resolution climatic record, with an average temporal resolution of less than 600 yr. A multi-proxy approach was used to produce an age model for Core PS2821-1, and to correlate the two cores. Both cores document the last climatic cycle, from Marine Isotopic Stage 6 (MIS 6, ca. 160 kyr BP, ka) to present. Summer sea-surface temperatures (SSSTs) have been estimated, with a standard error of ca. +/-1.16°C, for the down core record by using Q-mode factor analysis (Imbrie and Kipp method). The paleotemperatures show a 7°C warming at Termination II (last interglacial, transition from MIS 6 to MIS 5). This transition from glacial to interglacial paleotemperatures (with maximum temperatures ca. 3°C warmer than present at the core location) occurs earlier than the corresponding shift in delta18O values for benthic foraminifera from the same core; this suggests a lead of Southern Ocean paleotemperature changes compared to the global ice-volume changes, as indicated by the benthic isotopic record. The climatic evolution of the record continues with a progressive temperature deterioration towards MIS 2. High-frequency, millennial-scale climatic instability has been documented for MIS 3 and part of MIS 4, with sudden temperature variations of almost the same magnitude as those observed at the transitions between glacial and interglacial times. These changes occur during the same time interval as the Dansgaard-Oeschger cycles recognized in the delta18Oice record of the GRIP and GISP ice cores from Greenland, and seem to be connected to rapid changes in the STF position in relation to the core location. Sudden cooling episodes ('Younger Dryas (YD)-type' and 'Antarctic Cold Reversal (ACR)-type' of events) have been recognized for both Termination I (ACR-I and YD-I events) and II (ACR-II and YD-II events), and imply that our core is located in an optimal position in order to record events triggered by phenomena occurring in both hemispheres. Spectral analysis of our SSST record displays strong analogies, particularly for high, sub-orbital frequencies, to equivalent records from Vostok (Antarctica) and from the Subtropical North Atlantic ocean. This implies that the climatic variability of widely separated areas (the Antarctic continent, the Subtropical North Atlantic, and the Subantarctic South Atlantic) can be strongly coupled and co-varying at millennial time scales (a few to 10-ka periods), and eventually induced by the same triggering mechanisms. Climatic variability has also been documented for supposedly warm and stable interglacial intervals (MIS 1 and 5), with several cold events which can be correlated to other Southern Ocean and North Atlantic sediment records.
    Keywords: 177-1089; Agulhas Basin; Agulhas Ridge; ANT-IV/3; ANT-IV/4; ANT-IX/2; ANT-IX/4; ANT-VIII/3; ANT-VIII/6; ANT-X/5; ANT-XI/2; ANT-XI/4; Astrid Ridge; Atka Bay; Atlantic Ridge; AWI_Paleo; Brazil Basin; Cape Basin; COMPCORE; Composite Core; Filchner Shelf; Fram Strait; GeoB2004-1; GeoB2007-1; GeoB2008-1; GeoB2016-3; GeoB2018-1; GeoB2019-2; GeoB2021-4; GeoB2022-3; Giant box corer; GKG; Gravity corer (Kiel type); Indian-Antarctic Ridge; Joides Resolution; Lazarev Sea; Leg177; M23/1; Maud Rise; Meteor (1986); Meteor Rise; MIC; MiniCorer; MSN; MUC; MultiCorer; Multiple opening/closing net; Ocean Drilling Program; ODP; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; PLA; Plankton net; Polarstern; PS08; PS08/356; PS08/364; PS08/365; PS08/374; PS08/610; PS1380-1; PS1386-1; PS1387-1; PS1394-1; PS1455-4; PS16; PS16/267; PS16/271; PS16/281; PS16/294; PS16/306; PS16/311; PS16/316; PS16/321; PS16/323; PS16/329; PS16/334; PS16/337; PS16/342; PS16/345; PS16/351; PS16/354; PS16/362; PS16/366; PS16/372; PS16/507; PS16/518; PS16/534; PS16/540; PS16/547; PS16/557; PS1751-2; PS1752-5; PS1755-1; PS1759-1; PS1765-1; PS1768-1; PS1771-4; PS1772-2; PS1773-2; PS1774-1; PS1775-5; PS1776-6; PS1777-7; PS1778-1; PS1779-3; PS1780-1; PS1782-6; PS1783-2; PS1786-2; PS18; PS18/055; PS18/075; PS18/084; PS18/088; PS18/092; PS18/096; PS18/229; PS18/232; PS18/236; PS18/237; PS18/238; PS18/239; PS18/241; PS18/244; PS18/261; PS18/262; PS18/263; PS18/267; PS1805-5; PS18 06AQANTIX_2; PS1813-3; PS1821-5; PS1823-1; PS1825-5; PS1831-5; PS1957-1; PS1967-1; PS1973-1; PS1975-1; PS1977-1; PS1979-1; PS2073-1; PS2076-1; PS2080-1; PS2081-1; PS2082-3; PS2083-2; PS2084-2; PS2087-1; PS2103-2; PS2104-2; PS2105-2; PS2109-3; PS22/690; PS22 06AQANTX_5; PS2254-1; PS2256-4; PS2487-2; PS2488-1; PS2489-4; PS2491-4; PS2492-1; PS2493-3; PS2494-1; PS2495-1; PS2496-2; PS2498-2; PS2557-2; PS2560-3; PS2561-1; PS2562-1; PS2563-3; PS2564-2; PS28; PS28/236; PS28/243; PS28/256; PS28/264; PS28/277; PS28/280; PS28/289; PS28/293; PS28/298; PS28/304; PS30; PS30/004; PS30/023; PS30/030; PS30/038; PS30/043; PS30/048; Shona Ridge; SL; South African margin; South Atlantic; South Atlantic Ocean; South Sandwich Basin; South Sandwich Islands; South Sandwich Trough; Water sample; Weddell Sea; WS
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Köhler, Sabine E I (1992): Spätquartäre paläo-ozeanographische Entwicklung des Nordpolarmeeres anhand von Sauerstoff- und Kohlenstoff-Isotopenverhältnissen der planktischen Foraminifere. GEOMAR Report, GEOMAR Research Center for Marine Geosciences, Christian Albrechts University in Kiel, 13, 104 pp
    Publication Date: 2024-06-26
    Description: Oxygen and carbon isotope measurements were carried out on tests of planktic foraminifers N. pachyderma (sin.) from eight sediment cores taken from the eastern Arctic Ocean, the Fram Strait, and the lceland Sea, in order to reconstruct Arctic Ocean and Norwegian-Greenland Sea circulation patterns and ice covers during the last 130,000 years. In addition, the influence of ice, temperature and salinity effects on the isotopic signal was quantified. Isotope measurements on foraminifers from sediment surface samples were used to elucidate the ecology of N. pachyderma (sin.). Changes in the oxygen and carbon isotope composition of N. pachyderma (sin.) from sediment surface samples document the horizontal and vertical changes of water mass boundaries controlled by water temperature and salinity, because N. pachyderma (sin.) shows drastic changes in depth habitats, depending on the water mass properties. It was able to be shown that in the investigated areas a regional and spatial apparent increase of the ice effect occurred. This happened especially during the termination I by direct advection of meltwaters from nearby continents or during the termination and in interglacials by supply of isotopically light water from rivers. A northwardly proceeding overprint of the 'global' ice effect, increasing from the Norwegian-Greenland Sea to the Arctic Ocean, was not able to be demonstrated. By means of a model the influence of temperature and salinity on the global ice volume signal during the last 130,000 years was recorded. In combination with the results of this study, the model was the basis for a reconstruction of the paleoceanographic development of the Arctic Ocean and the Norwegian-Greenland Sea during this time interval. The conception of a relatively thick and permanent sea ice cover in the Nordic Seas during glacial times should be replaced by the model of a seasonally and regionally highly variable ice cover. Only during isotope stage 5e may there have been a local deep water formation in the Fram Strait.
    Keywords: 49-08; 49-13; 49-14; 49-15; 49-18; 49-20; 49-39; 49-43; 49-50; 52-04; 52-09; 52-14; 52-24; 52-28; 52-30; 52-33; 52-37; 52-38; 57-04; 57-06; 57-07; 57-08; 57-09; 57-10; 57-11; 57-12; 57-13; 57-14; 57-20; 58-08; Antarctic Ocean; Arctic Ocean; ARK-I/3; ARK-II/4; ARK-II/5; ARK-IV/3; ARK-VII/1; BC; Box corer; BS88/6_10B; BS88/6_3; BS88/6_4; BS88/6_6; BS88/6_7; BS88/6_8; CTD/Rosette; CTD-RO; Fram Strait; GEOMAR; Giant box corer; GIK13123-1; GIK13124-1; GIK13131-1; GIK13138-1; GIK13140-3; GIK13147-1; GIK13150-1; GIK16129-1; GIK16130-1; GIK16132-1; GIK16136-1; GIK16141-1; GIK16142-1; GIK16144-1; GIK16911-1; GIK16916-1; GIK16917-1; GIK16921-1; GIK21513-9 PS11/276-9; GIK21515-10 PS11/280-10; GIK21519-11 PS11/296-11; GIK21520-10 PS11/310-10; GIK21522-19 PS11/358-19; GIK21523-15 PS11/362-15; GIK21524-1 PS11/364-1; GIK21525-2 PS11/365-2; GIK21525-3 PS11/365-3; GIK21527-10 PS11/371-10; GIK21528-7 PS11/372-7; GIK21529-7 PS11/376-7; GIK21533-3 PS11/412; GIK21534-6 PS11/423-6; GIK21535-5 PS11/430-5; GIK21535-8 PS11/430-8; GIK21845-2 PS17/010; GIK21852-1 PS17/018; GIK23037-2; GIK23038-3; GIK23039-3; GIK23040-3; GIK23041-1; GIK23042-1; GIK23043-1; GIK23055-2; GIK23056-2; GIK23057-2; GIK23058-1; GIK23059-2; GIK23061-3; GIK23062-3; GIK23064-2; GIK23065-2; GIK23066-2; GIK23067-2; GIK23068-2; GIK23069-2; GIK23071-2; GIK23072-2; GIK23074-3; GIK23215-1 PS03/215; GIK23227-1 PS05/412; GIK23228-1 PS05/413; GIK23229-1 PS05/414; GIK23230-1 PS05/416; GIK23231-1 PS05/417; GIK23233-1 PS05/420; GIK23235-1 PS05/422; GIK23237-1 PS05/425; GIK23238-1 PS05/426; GIK23239-1 PS05/427; GIK23240-1 PS05/428; GIK23241-1 PS05/429; GIK23242-1 PS05/430; GIK23243-1 PS05/431; GIK23244-1 PS05/449; GIK23247-1 PS05/452; GIK-cruise; GKG; Gravity corer (Kiel type); Håkon Mosby; Helmholtz Centre for Ocean Research Kiel; HM49; HM49-08; HM49-13; HM49-14; HM49-15; HM49-18; HM49-20; HM49-39; HM49-43; HM49-50; HM52; HM52-04; HM52-09; HM52-14; HM52-24; HM52-28; HM52-30; HM52-33; HM52-37; HM52-38; HM57; HM57-04; HM57-06; HM57-07; HM57-08; HM57-09; HM57-10; HM57-11; HM57-12; HM57-13; HM57-14; HM57-20; HM58; HM58-08; HM82/83; Iceland Sea; KAL; Kasten corer; KOL; Kolbeinsey Ridge; M107-1; M2/1; M2/2; Meteor (1986); Nansen Basin; Norwegian-Greenland Sea/off Iceland; Norwegian Sea; Piston corer (Kiel type); PO158/A; Polarstern; POS158/1; POS158/1-GEOM_01/1-GKG; POS158/1-GEOM_03/1-GKG; POS158/1-GEOM_04/1-GKG; POS158/1-GEOM_06/1-GKG; Poseidon; PS03; PS05; PS11; PS1126-1; PS1227-1; PS1228-1; PS1229-1; PS1230-1; PS1231-1; PS1233-1; PS1235-1; PS1237-1; PS1238-1; PS1239-1; PS1240-1; PS1241-1; PS1242-1; PS1243-1; PS1244-1; PS1247-1; PS1513-9; PS1515-10; PS1519-11; PS1520-10; PS1522-19; PS1523-15; PS1524-1; PS1525-2; PS1525-3; PS1527-10; PS1528-7; PS1529-7; PS1533-3; PS1534-6; PS1535-5; PS1535-8; PS17; PS1845-2; PS1852-1; Quaternary Environment of the Eurasian North; QUEEN; SL; Svalbard; Voering Plateau; Voring Plateau; Yermak Plateau
    Type: Dataset
    Format: application/zip, 31 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rutgers van der Loeff, Michiel M; Berger, Gijs W (1993): Scavenging of 230Th and 231Pa near the antarctic polar front in the South Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 40(2), 339-357, https://doi.org/10.1016/0967-0637(93)90007-P
    Publication Date: 2024-06-26
    Description: Vertical profiles of dissolved and particulate 230Th and 231Pa were obtained across the Antarctic Circumpolar Current (ACC) in the southern Atlantic. North of the Polar Front, dissolved and total 230Th increase with depth in conformity with published scavenging models. There is no depletion of 230Th or 231Pa in the water column south of the Polar Front, thought to be an area of enhanced biological productivity. 230Th concentrations increase three-fold to the Weddell Sea across the ACC. Dissolved and total 231Pa concentrations are relatively constant below 500 m depth at about 0.3 dpm m**-3, and change little with depth or latitude. The results from the Weddell Gyre are explained by a mixing-scavenging model that takes into account the input of lower Circumpolar Deep Water through upwelling, which is the main source of water in the Weddell Gyre and is enriched in 230Th but not in 231Pa. 230Th accumulates in the Weddell Gyre as a result of a reduction in the scavenging rate and by ingrowth from 234U. Ingrowth is more significant for 230Th than for 231Pa because the residence time of water in the gyre (about 35 years) is similar to the scavenging residence time of Th in the south Atlantic (29 years) but shorter than that of Pa (120 years). It is argued that changes in 230Th accumulation in the past may reflect changes in water residence time and in the formation rate of Weddell Sea Deep Water.
    Keywords: Agulhas Basin; ANT-IX/3; ANT-VIII/3; Atlantic Ridge; AWI_MarGeoChem; AWI_Paleo; Marine Geochemistry @ AWI; Maud Rise; Meteor Rise; MULT; Multiple investigations; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS16; PS16/267; PS16/281; PS16/294; PS16/311; PS16/321; PS16/342; PS16/362; PS16/370; PS1751-8; PS1755-2; PS1759-5; PS1768-2; PS1772-2; PS1777-8; PS1782-7; PS1785-1; PS18; PS18/227; PS2072; Shona Ridge; South Sandwich Basin; South Sandwich Trough; Water sample; WS
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...