ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (1,711)
  • 2020-2023  (343)
  • 1980-1984  (1,368)
Collection
Years
Year
  • 1
    Publication Date: 2024-07-01
    Description: A six-fold increase in the rate of accumulation of Al in north and central Atlantic and Pacific Ocean sediments indicates vastly increased denudation of the continents during the past 15 Ma. The increase is more apparent in hemipelagic than pelagic sites, demonstrating widely distributed local controls. Similarities in the rate of increase in the Atlantic and Pacific show that tectonic elevation is not responsible for the difference in sedimentation rate. Also, similarities in the difference at sites of low and high latitude suggest that glaciation is not the most significant source. A lack of correspondence between sedimentation rates and Vail's sea-level curve similarly rule out that effect. The conclusion drawn here is that worldwide climatic deterioration during the late Tertiary is the explanation for the striking increase in detrital sedimentation in the World ocean.
    Keywords: 10-94; 11-106; 12-116; 12-118; 12-119; 14-142; 15-149; 16-158; 18-173; 18-178; 19-183; 19-192; 21-206; 21-210; 22-213; 22-214; 22-218; 24-231; 24-236; 24-238; 25-241; 26-250; 28-266; 29-278; 30-289; 31-292; 31-296; 31-297; 32-310; 34-321; 38-338; 38-341; 39-354; 40-362; 41-366; 4-29; 4-30; 43-382; 5-34; 7-62; Accumulation rate, aluminium; Antarctic Ocean/BASIN; Antarctic Ocean/RIDGE; Caribbean Sea/BASIN; Caribbean Sea/RIDGE; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Event label; Glomar Challenger; Gulf of Mexico/SCARP; Indian Ocean//BASIN; Indian Ocean//FAN; Indian Ocean//FRACTURE ZONE; Indian Ocean//RIDGE; Indian Ocean/Gulf of Aden/BASIN; Latitude of event; Leg10; Leg11; Leg12; Leg14; Leg15; Leg16; Leg18; Leg19; Leg21; Leg22; Leg24; Leg25; Leg26; Leg28; Leg29; Leg30; Leg31; Leg32; Leg34; Leg38; Leg39; Leg4; Leg40; Leg41; Leg43; Leg5; Leg7; Longitude of event; North Atlantic/BASIN; North Atlantic/CONT RISE; North Atlantic/Norwegian Sea; North Atlantic/Norwegian Sea/PLATEAU; North Atlantic/PLAIN; North Atlantic/SEAMOUNT; North Pacific/CONT RISE; North Pacific/GUYOT; North Pacific/Philippine Sea/BASIN; North Pacific/Philippine Sea/CONT RISE; North Pacific/Philippine Sea/RIDGE; North Pacific/PLAIN; North Pacific/RIDGE; North Pacific/SLOPE; Number of observations; Ratio; South Atlantic/RIDGE; South Pacific/BASIN; South Pacific/Coral Sea/BASIN; South Pacific/PLATEAU; South Pacific/Tasman Sea/BASIN
    Type: Dataset
    Format: text/tab-separated-values, 303 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Keller, Gerta; Barron, John A (1983): Paleoceanographic implications of Miocene deep-sea hiatuses. Geological Society of America Bulletin, 94(5), 590-613, https://doi.org/10.1130/0016-7606(1983)94%3C590:PIOMDH%3E2.0.CO;2
    Publication Date: 2024-07-01
    Description: Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).
    Keywords: 10-90; 10-97; 11-101; 11-102; 11-103; 11-104; 12-111; 12-116; 12-119; 14-141; 14-142; 15-149; 15-150; 15-151; 15-153; 15-154; 16-155; 16-157; 16-158; 16-159; 16-160; 16-161; 16-162; 16-163; 17-164; 17-165; 17-166; 17-168; 17-170; 17-171; 18-172; 18-173; 19-183; 19-192; 20-199; 20-200; 20-202; 21-205; 21-206; 21-207; 21-208; 21-209; 21-210; 22-212; 22-213; 22-214; 22-215; 22-216; 22-218; 23-220; 23-221; 23-223; 23-224; 24-231; 24-234; 24-236; 24-237; 24-238; 26-251; 26-253; 26-254; 26-255; 26-256; 26-257; 26-258; 27-259; 28-264; 28-265; 28-266; 28-273; 28-274; 29-275; 29-276; 29-277; 29-278; 29-279; 29-280; 29-281; 29-282; 29-283; 29-284; 30-285; 30-286; 30-287; 30-288; 30-289; 31-290; 31-292; 31-296; 3-14; 3-15; 3-17; 3-20; 32-304; 32-305; 32-306; 32-307; 32-308; 32-310; 32-311; 32-313; 33-315; 33-316; 33-317; 33-318; 34-319; 36-327; 36-328; 36-329; 37-334; 38-336; 38-338; 38-339; 38-352; 39-354; 39-355; 39-356; 39-357; 39-359; 40-360; 40-362; 40-363; 40-364; 41-366; 41-368; 41-369; 42-372; 4-25; 4-29; 4-30; 43-386; 44-391; 45-396; 47-397; 47-398; 48-400; 48-404; 48-405; 48-406; 49-407; 49-408; 49-410; 5-34; 5-36; 5-38; 5-39; 5-40; 5-41; 5-42; 55-430; 55-431; 55-432; 55-433; 56-436; 57-438; 57-439; 57-440; 58-443; 58-444; 58-445; 59-447; 59-448; 59-449; 59-450; 59-451; 61-462; 62-463; 62-464; 62-465; 62-466; 63-467; 63-468; 63-469; 63-470; 63-471; 63-472; 6-45; 6-46; 6-47; 6-48; 6-49; 6-50; 6-51; 6-52; 6-53; 6-55; 6-56; 67-495; 68-503; 7-61; 7-62; 7-63; 7-64; 7-65; 7-66; 7-67; 8-68; 8-69; 8-70; 8-71; 8-72; 8-73; 8-74; 8-75; 9-77; 9-78; 9-79; 9-83; 9-84; Antarctic Ocean; Antarctic Ocean/BASIN; Antarctic Ocean/CONT RISE; Antarctic Ocean/PLATEAU; Antarctic Ocean/RIDGE; Antarctic Ocean/Tasman Sea; Antarctic Ocean/Tasman Sea/CONT RISE; Antarctic Ocean/Tasman Sea/PLATEAU; Antarctic Ocean/Tasman Sea/RIDGE; Caribbean Sea/BASIN; Caribbean Sea/GAP; Caribbean Sea/RIDGE; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Gulf of Mexico/BANK; Gulf of Mexico/PLAIN; Indian Ocean//BASIN; Indian Ocean//FAN; Indian Ocean//FRACTURE ZONE; Indian Ocean//PLATEAU; Indian Ocean//RIDGE; Indian Ocean/Arabian Sea/HILL; Indian Ocean/Arabian Sea/PLAIN; Indian Ocean/Arabian Sea/RIDGE; Indian Ocean/Gulf of Aden/BASIN; Leg10; Leg11; Leg12; Leg14; Leg15; Leg16; Leg17; Leg18; Leg19; Leg20; Leg21; Leg22; Leg23; Leg24; Leg26; Leg27; Leg28; Leg29; Leg3; Leg30; Leg31; Leg32; Leg33; Leg34; Leg36; Leg37; Leg38; Leg39; Leg4; Leg40; Leg41; Leg42; Leg43; Leg44; Leg45; Leg47; Leg48; Leg49; Leg5; Leg55; Leg56; Leg57; Leg58; Leg59; Leg6; Leg61; Leg62; Leg63; Leg67; Leg68; Leg7; Leg8; Leg9; Mediterranean Sea/BASIN; North Atlantic/BASIN; North Atlantic/CONT RISE; North Atlantic/CONT SLOPE; North Atlantic/DIAPIR; North Atlantic/KNOLL; North Atlantic/Norwegian Sea; North Atlantic/Norwegian Sea/DIAPIR; North Atlantic/Norwegian Sea/PLATEAU; North Atlantic/PLAIN; North Atlantic/PLATEAU; North Atlantic/RIDGE; North Atlantic/SEAMOUNT; North Atlantic/SEDIMENT POND; North Pacific; North Pacific/ABYSSAL FLOOR; North Pacific/BASIN; North Pacific/CONT RISE; North Pacific/ESCARPMENT; North Pacific/FAN; North Pacific/FLANK; North Pacific/GAP; North Pacific/GUYOT; North Pacific/HILL; North Pacific/Philippine Sea/BASIN; North Pacific/Philippine Sea/CONT RISE; North Pacific/Philippine Sea/RIDGE; North Pacific/PLAIN; North Pacific/PLATEAU; North Pacific/RIDGE; North Pacific/SEAMOUNT; North Pacific/SEDIMENT POND; North Pacific/SLOPE; North Pacific/TERRACE; North Pacific/TRENCH; North Pacific/VALLEY; South Atlantic; South Atlantic/BANK; South Atlantic/BASIN; South Atlantic/CONT RISE; South Atlantic/HILL; South Atlantic/PLATEAU; South Atlantic/RIDGE; South Atlantic/SEAMOUNT; South Atlantic/SYNCLINE; South Atlantic/VALLEY; South Pacific; South Pacific/BASIN; South Pacific/CONT RISE; South Pacific/Coral Sea; South Pacific/Coral Sea/BASIN; South Pacific/Coral Sea/PLATEAU; South Pacific/PLATEAU; South Pacific/RIDGE; South Pacific/Tasman Sea/BASIN; South Pacific/Tasman Sea/CONT RISE
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-01
    Keywords: Argon; Argon, dissolved; Campaign of event; Canarias Sea; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Drake Passage; Elevation of event; Event label; Gas chromatography; Geochemical Ocean Sections Study; GEOSECS; GEOSECS_Atlantic_4; GEOSECS_Atlantic_5; GEOSECS_Atlantic_6; GEOSECS_Atlantic_7; GEOSECS_Atlantic_8; GEOSECS_Atlantic_9; GEOSECS036; GEOSECS037; GEOSECS039; GEOSECS040; GEOSECS042; GEOSECS046; GEOSECS048; GEOSECS049; GEOSECS053; GEOSECS054; GEOSECS055; GEOSECS056; GEOSECS057; GEOSECS058; GEOSECS059; GEOSECS060; GEOSECS061; GEOSECS064; GEOSECS066; GEOSECS067; GEOSECS068; GEOSECS069; GEOSECS074; GEOSECS075; GEOSECS076; GEOSECS078; GEOSECS079; GEOSECS082; GEOSECS085; GEOSECS087; GEOSECS089; GEOSECS091; GEOSECS092; GEOSECS093; GEOSECS102; GEOSECS103; GEOSECS105; GEOSECS114; GEOSECS115; GEOSECS116; GEOSECS117; GEOSECS118; GEOSECS119; GEOSECS120; GEOSECS121; Knorr; Latitude of event; Leg 4; Leg 5; Leg 6; Leg 7; Leg 8; Leg 9; Longitude of event; Nitrogen; Nitrogen, total dissolved; Sample ID; Scotia Sea; South Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 7936 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sorem, Ronald K; Fewkes, Ronald H (1980): Distribution of Todorokite and Birnessite in manganese nodules from the "Horn Region", Eastern Pacific Ocean. in: Varentsov, I. M., Grasselly, G. (Eds.), Geology and Geochemistry of Manganese, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 1, 201-229, https://store.pangaea.de/Projects/NOAA-MMS/Sorem_1980.pdf
    Publication Date: 2024-07-01
    Description: The oxide portion of marine manganese nodules deserves intensive study because it probably reflects directly the conditions under which nodules form in the Bea. A better understanding of the nature of the oxides in nodules should therefore throw new light on basic problems of nodule origin.
    Keywords: BC; Box corer; Comment; Date/Time of event; Deposit type; DEPTH, sediment/rock; Description; Dredge; DRG; Elevation of event; Event label; FFGR; Free-fall grab; KEN72-SP9; Latitude of event; Longitude of event; Mn-74-01-001-FFG-001; Mn-74-01-002-FFG-004; Mn-74-01-003-FFG-007; Mn-74-01-005-B2; Mn-74-01-005-FFG-015; Mn-74-01-006-FFG-017; Mn-74-01-006-FFG-018; Mn-74-01-006-FFG-019; Mn-74-01-006-FFG-020; Mn-74-01-006-FFG-021; Mn-74-01-006-FFG-022; Mn-74-01-006-FFG-023; Mn-74-01-006-FFG-024; Mn-74-01-006-FFG-025; Mn-74-01-006-FFG-026; Mn-74-01-007-FFG-028; Mn-74-01-007-FFG-029; Mn-74-01-007-FFG-030; Mn-74-01-009-FFG-036; Mn-74-01-010-FFG-037; Mn-74-01-010-FFG-038; Mn-74-01-010-FFG-040; Mn-74-01-010-FFG-043; Mn-74-01 IODE; Mn-74-02-13A-FFG-002; Mn-74-02-13A-FFG-003; Mn-74-02-13A-FFG-004; Mn-74-02-13B-FFG-005; Mn-74-02-13B-FFG-007; Mn-74-02-13B-FFG-008; Mn-74-02-13C-FFG-009; Mn-74-02-13C-FFG-010; Mn-74-02-13C-FFG-011; Mn-74-02-13C-FFG-012; Mn-74-02-15-FFG-021; Mn-74-02-15-FFG-023; Mn-74-02-15-FFG-025; Mn-74-02 IDOE DOMES; Moana Wave; MW7401; MW7401-01G01; MW7401-02G04; MW7401-03G07; MW7401-05B02; MW7401-05G15; MW7401-06G17; MW7401-06G18; MW7401-06G19; MW7401-06G20; MW7401-06G21; MW7401-06G22; MW7401-06G23; MW7401-06G24; MW7401-06G25; MW7401-06G26; MW7401-07G28; MW7401-07G29; MW7401-07G30; MW7401-09G36; MW7401-10G37; MW7401-10G38; MW7401-10G40; MW7401-10G43; MW7402; MW7402-13G02; MW7402-13G03; MW7402-13G04; MW7402-13G05; MW7402-13G07; MW7402-13G08; MW7402-13G09; MW7402-13G10; MW7402-13G11; MW7402-13G12; MW7402-15G21; MW7402-15G23; MW7402-15G25; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Pacific Ocean; Position; Sample code/label; Sample ID; Size; Substrate type; Uniform resource locator/link to image
    Type: Dataset
    Format: text/tab-separated-values, 597 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-07-01
    Keywords: ALTITUDE; ARK-II/2; AWI_Meteo; Humidity, relative; Meteorological Long-Term Observations @ AWI; Norwegian Sea; Polarstern; Pressure, at given altitude; PS05; PS05/00848; RADIO; Radiosonde; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 1110 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-07-01
    Keywords: ALTITUDE; ARK-II/2; AWI_Meteo; Humidity, relative; Meteorological Long-Term Observations @ AWI; North Greenland Sea; Polarstern; Pressure, at given altitude; PS05; PS05/00849; RADIO; Radiosonde; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 843 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-07-01
    Keywords: ALTITUDE; ARK-II/2; AWI_Meteo; Humidity, relative; Meteorological Long-Term Observations @ AWI; North Greenland Sea; Polarstern; Pressure, at given altitude; PS05; PS05/00850; RADIO; Radiosonde; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 3191 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-07-01
    Keywords: ALTITUDE; ARK-II/2; AWI_Meteo; Humidity, relative; Meteorological Long-Term Observations @ AWI; North Greenland Sea; Polarstern; Pressure, at given altitude; PS05; PS05/00853; RADIO; Radiosonde; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 2240 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-07-01
    Keywords: ALTITUDE; ARK-II/2; AWI_Meteo; Humidity, relative; Meteorological Long-Term Observations @ AWI; North Greenland Sea; Polarstern; Pressure, at given altitude; PS05; PS05/00854; RADIO; Radiosonde; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 1170 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-07-01
    Keywords: ALTITUDE; ARK-II/2; AWI_Meteo; Humidity, relative; Meteorological Long-Term Observations @ AWI; North Greenland Sea; Polarstern; Pressure, at given altitude; PS05; PS05/00855; RADIO; Radiosonde; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 1806 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...