ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,648)
  • BioMed Central  (7,648)
  • 2020-2022  (7,648)
  • Biology  (7,587)
  • Economics  (61)
Collection
  • Articles  (7,648)
Years
Year
Journal
  • 1
    Publication Date: 2021-10-29
    Description: Background Flowering plants (angiosperms) are dominant components of global terrestrial ecosystems, but phylogenetic relationships at the familial level and above remain only partially resolved, greatly impeding our full understanding of their evolution and early diversification. The plastome, typically mapped as a circular genome, has been the most important molecular data source for plant phylogeny reconstruction for decades. Results Here, we assembled by far the largest plastid dataset of angiosperms, composed of 80 genes from 4792 plastomes of 4660 species in 2024 genera representing all currently recognized families. Our phylogenetic tree (PPA II) is essentially congruent with those of previous plastid phylogenomic analyses but generally provides greater clade support. In the PPA II tree, 75% of nodes at or above the ordinal level and 78% at or above the familial level were resolved with high bootstrap support (BP ≥ 90). We obtained strong support for many interordinal and interfamilial relationships that were poorly resolved previously within the core eudicots, such as Dilleniales, Saxifragales, and Vitales being resolved as successive sisters to the remaining rosids, and Santalales, Berberidopsidales, and Caryophyllales as successive sisters to the asterids. However, the placement of magnoliids, although resolved as sister to all other Mesangiospermae, is not well supported and disagrees with topologies inferred from nuclear data. Relationships among the five major clades of Mesangiospermae remain intractable despite increased sampling, probably due to an ancient rapid radiation. Conclusions We provide the most comprehensive dataset of plastomes to date and a well-resolved phylogenetic tree, which together provide a strong foundation for future evolutionary studies of flowering plants.
    Electronic ISSN: 1741-7007
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: Background Long non-coding RNAs (lncRNAs) are involved in several immune processes, including the immune response to vaccination, but most of them remain uncharacterised in livestock species. The mechanism of action of aluminium adjuvants as vaccine components is neither not fully understood. Results We built a transcriptome from sheep PBMCs RNA-seq data in order to identify unannotated lncRNAs and analysed their expression patterns along protein coding genes. We found 2284 novel lncRNAs and assessed their conservation in terms of sequence and synteny. Differential expression analysis performed between animals inoculated with commercial vaccines or aluminium adjuvant alone and the co-expression analysis revealed lncRNAs related to the immune response to vaccines and adjuvants. A group of co-expressed genes enriched in cytokine signalling and production highlighted the differences between different treatments. A number of differentially expressed lncRNAs were correlated with a divergently located protein-coding gene, such as the OSM cytokine. Other lncRNAs were predicted to act as sponges of miRNAs involved in immune response regulation. Conclusions This work enlarges the lncRNA catalogue in sheep and puts an accent on their involvement in the immune response to repetitive vaccination, providing a basis for further characterisation of the non-coding sheep transcriptome within different immune cells.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: Background High-flow nasal cannula (HFNC) oxygen is a non-invasive ventilation system that was introduced as an alternative to CPAP (continuous positive airway pressure), with a marked increase in its use in pediatric care settings. This study aimed to evaluate the cost-effectiveness of early use of HFNC compared to oxygen by nasal cannula in an infant with bronchiolitis in the emergency setting. Methods A decision tree model was used to estimate the cost-effectiveness of HFNC compared with oxygen by nasal cannula (control strategy) in an infant with bronchiolitis in the emergency setting. Cost data were obtained from a retrospective study on bronchiolitis from tertiary centers in Rionegro, Colombia, while utilities were collected from the literature. Results The QALYs per patient calculated in the base-case model were 0.9141 (95% CI 0.913–0.915) in the HFNC and 0.9105 (95% CI 0.910–0.911) in control group. The cost per patient was US$368 (95% CI US$ 323–411) in HFNC and US$441 (95% CI US$ 384–498) per patient in the control group. Conclusions HFNC was cost-effective HFNC compared to oxygen by nasal cannula in an infant with bronchiolitis in the emergency setting. The use of this technology in emergency settings will allow a more efficient use of resources, especially in low-resource countries with high prevalence of bronchiolitis .
    Electronic ISSN: 2191-1991
    Topics: Medicine , Economics
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: Background The detection of environmental cues and signals via the sensory system directs behavioral choices in diverse organisms. Insect larvae rely on input from the chemosensory system, mainly olfaction, for locating food sources. In several lepidopteran species, foraging behavior and food preferences change across larval instars; however, the molecular mechanisms underlying such behavioral plasticity during larval development are not fully understood. Here, we hypothesize that expression patterns of odorant receptors (ORs) change during development, as a possible mechanism influencing instar-specific olfactory-guided behavior and food preferences. Results We investigated the expression patterns of ORs in larvae of the cotton leafworm Spodoptera littoralis between the first and fourth instar and revealed that some of the ORs show instar-specific expression. We functionally characterized one OR expressed in the first instar, SlitOR40, as responding to the plant volatile, β-caryophyllene and its isomer α-humulene. In agreement with the proposed hypothesis, we showed that first but not fourth instar larvae responded behaviorally to β-caryophyllene and α-humulene. Moreover, knocking out this odorant receptor via CRISPR-Cas9, we confirmed that instar-specific responses towards its cognate ligands rely on the expression of SlitOR40. Conclusion Our results provide evidence that larvae of S. littoralis change their peripheral olfactory system during development. Furthermore, our data demonstrate an unprecedented instar-specific behavioral plasticity mediated by an OR, and knocking out this OR disrupts larval behavioral plasticity. The ecological relevance of such behavioral plasticity for S. littoralis remains to be elucidated, but our results demonstrate an olfactory mechanism underlying this plasticity in foraging behavior during larval development.
    Electronic ISSN: 1741-7007
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: Background The Agrobacterium strain AB2/73 has a unique host range for the induction of crown gall tumors, and contains an exceptionally large, over 500 kbp mega Ti plasmid. We used whole genome sequencing to fully characterize and comparatively analyze the complex genome of strain AB2/73, including its Ti plasmid and virulence factors. Results We obtained a high-quality, full genomic sequence of AB2/73 by a combination of short-read Illumina sequencing and long-read Nanopore sequencing. The AB2/73 genome has a total size of 7,266,754 bp with 59.5% GC for which 7012 genes (6948 protein coding sequences) are predicted. Phylogenetic and comparative genomics analysis revealed that strain AB2/73 does not belong to the genus Agrobacterium, but to a new species in the genus Rhizobium, which is most related to Rhizobium tropici. In addition to the chromosome, the genome consists of 6 plasmids of which the largest two, of more than 1 Mbp, have chromid-like properties. The mega Ti plasmid is 605 kbp in size and contains two, one of which is incomplete, repABC replication units and thus appears to be a cointegrate consisting of about 175 kbp derived from an unknown Ti plasmid linked to 430 kbp from another large plasmid. In pTiAB2/73 we identified a complete set of virulence genes and two T-DNAs. Besides the previously described T-DNA we found a larger, second T-DNA containing a 6b-like onc gene and the acs gene for agrocinopine synthase. Also we identified two clusters of genes responsible for opine catabolism, including an acc-operon for agrocinopine degradation, and genes putatively involved in ridéopine catabolism. The plasmid also harbours tzs, iaaM and iaaH genes for the biosynthesis of the plant growth regulators cytokinin and auxin. Conclusions The comparative genomics analysis of the high quality genome of strain AB2/73 provided insight into the unusual phylogeny and genetic composition of the limited host range Agrobacterium strain AB2/73. The description of its unique genomic composition and of all the virulence determinants in pTiAB2/73 will be an invaluable tool for further studies into the special host range properties of this bacterium.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: Background Plant miRNAs are involved in the response to biotic and abiotic stresses by altering their expression levels, and they play an important role in the regulation of plant resistance to stress. However, the molecular mechanism that regulates the expression levels of miRNAs in plants with biotic and abiotic stress still needs to be explored. Previously, we found that the expression of the miR482 family was changed in tomato infected by Botrytis cinerea. In this study, we investigated and uncovered the mechanism underlying the response of miR482 to B. cinerea infection in tomato. Results First, RT-qPCR was employed to detect the expression patterns of miR482b in tomato infected by B. cinerea, and results showed that miR482b primary transcripts (pri-miR482b) were up-regulated in B. cinerea-infected leaves, but the mature miR482b was down-regulated. Subsequently, we used rapid amplification cDNA end method to amplify the full-length of pri-miR482b. Result showed that the pri-miR482b had two isoforms, with the longer one (consisting 300 bp) having an extra fragment of 53 bp in the 3’-end compared with the shorter one. In vitro Dicer assay indicated that the longer isoform pri-miR482b-x1 had higher efficiency in the post-transcriptional splicing of miRNA than the shorter isoform pri-miR482b-x2. In addition, the transcription level of mature miR482b was much higher in transgenic Arabidopsis overexpressing pri-miR482b-x1 than that in OE pri-miR482b-x2 Arabidopsis. These results confirmed that this extra 53 bp in pri-miR482b-x1 might play a key role in the miR482b biogenesis of post-transcription processing. Conclusions Extra 53 bp in pri-miR482b-x1 enhanced miR482b biogenesis, which elevated the transcription level of miR482b. This study clarified the response of miR482 to B. cinerea infection in tomato, thereby helping us further understand the molecular mechanisms that regulate the expression levels of other miRNAs.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-28
    Description: Background Temperature change affects the myriad of concurrent cellular processes in a non-uniform, disruptive manner. While endothermic organisms minimize the challenge of ambient temperature variation by keeping the core body temperature constant, cells of many ectothermic species maintain homeostatic function within a considerable temperature range. The cellular mechanisms enabling temperature acclimation in ectotherms are still poorly understood. At the transcriptional level, the heat shock response has been analyzed extensively. The opposite, the response to sub-optimal temperature, has received lesser attention in particular in animal species. The tissue specificity of transcriptional responses to cool temperature has not been addressed and it is not clear whether a prominent general response occurs. Cis-regulatory elements (CREs), which mediate increased transcription at cool temperature, and responsible transcription factors are largely unknown. Results The ectotherm Drosophila melanogaster with a presumed temperature optimum around 25 °C was used for transcriptomic analyses of effects of temperatures at the lower end of the readily tolerated range (14–29 °C). Comparative analyses with adult flies and cell culture lines indicated a striking degree of cell-type specificity in the transcriptional response to cool. To identify potential cis-regulatory elements (CREs) for transcriptional upregulation at cool temperature, we analyzed temperature effects on DNA accessibility in chromatin of S2R+ cells. Candidate cis-regulatory elements (CREs) were evaluated with a novel reporter assay for accurate assessment of their temperature-dependency. Robust transcriptional upregulation at low temperature could be demonstrated for a fragment from the pastrel gene, which expresses more transcript and protein at reduced temperatures. This CRE is controlled by the JAK/STAT signaling pathway and antagonizing activities of the transcription factors Pointed and Ets97D. Conclusion Beyond a rich data resource for future analyses of transcriptional control within the readily tolerated range of an ectothermic animal, a novel reporter assay permitting quantitative characterization of CRE temperature dependence was developed. Our identification and functional dissection of the pst_E1 enhancer demonstrate the utility of resources and assay. The functional characterization of this CoolUp enhancer provides initial mechanistic insights into transcriptional upregulation induced by a shift to temperatures at the lower end of the readily tolerated range.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: Background The Rhizobiales (Proteobacteria) order is an abundant and diverse group of microorganisms, being extensively studied for its lifestyle based on the association with plants, animals, and humans. New studies have demonstrated that the last common ancestor (LCA) of Rhizobiales had a free-living lifestyle, but the phylogenetic and metabolism characterization of basal lineages remains unclear. Here, we used a high-resolution phylogenomic approach to test the monophyly of the Aestuariivirgaceae family, a new taxonomic group of Rhizobiales. Furthermore, a deep metabolic investigation provided an overview of the main functional traits that can be associated with its lifestyle. We hypothesized that the presence of pathways (e.g., Glycolysis/Gluconeogenesis) and the absence of pathogenic genes would be associated with a free-living lifestyle in Aestuariivirgaceae. Results Using high-resolution phylogenomics approaches, our results revealed a clear separation of Aestuariivirgaceae into a distinct clade of other Rhizobiales family, suggesting a basal split early group and corroborate the monophyly of this group. A deep functional annotation indicated a metabolic versatility, which includes putative genes related to sugar degradation and aerobic respiration. Furthermore, many of these traits could reflect a basal metabolism and adaptations of Rhizobiales, as such the presence of Glycolysis/Gluconeogenesis pathway and the absence of pathogenicity genes, suggesting a free-living lifestyle in the Aestuariivirgaceae members. Conclusions Aestuariivirgaceae (Rhizobiales) family is a monophyletic taxon of the Rhizobiales with a free-living lifestyle and a versatile metabolism that allows these microorganisms to survive in the most diverse microbiomes, demonstrating their adaptability to living in systems with different conditions, such as extremely cold environments to tropical rivers.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-28
    Description: Background There is a long-term interest in investigating the genetic basis of the horned/polled phenotype in domestic goats. Here, we report a genome-wide association study (GWAS) to detect the genetic loci affecting the polled phenotype in goats. Results We obtained a total of 13,980,209 biallelic SNPs, using the genotyping-by-sequencing data from 45 Jintang Black (JT) goats, which included 32 female and nine male goats, and four individuals with the polled intersex syndrome (PIS). Using a mixed-model based GWAS, we identified two association signals, which were located at 150,334,857–150,817,260 bp (P = 5.15 × 10− 119) and 128,286,704–131,306,537 bp (P = 2.74 × 10− 15) on chromosome 1. The genotype distributions of the 14 most significantly associated SNPs were completely correlated with horn status in goats, based on the whole-genome sequencing (WGS) data from JT and two other Chinese horned breeds. However, variant annotation suggested that none of the detected SNPs within the associated regions were plausible causal mutations. Via additional read-depth analyses and visual inspections of WGS data, we found a 10.1-kb deletion (CHI1:g. 129424781_129434939del) and a 480-kb duplication (CHI1:150,334,286–150,818,098 bp) encompassing two genes KCNJ15 and ERG in the associated regions of polled and PIS-affected goats. Notably, the 10.1-kb deletion also served as the insertion site for the 480-kb duplication, as validated by PCR and Sanger sequencing. Our WGS genotyping showed that all horned goats were homozygous for the reference alleles without either the structural variants (SVs), whereas the PIS-affected goats were homozygous for both the SVs. We also demonstrated that horned, polled, and PIS-affected individuals among 333 goats from JT and three other Chinese horned breeds can be accurately classified via PCR amplification and agarose gel electrophoresis of two fragments in both SVs. Conclusion Our results revealed that two genomic regions on chromosome 1 are major loci affecting the polled phenotypes in goats. We provided a diagnostic PCR to accurately classify horned, polled, and PIS-affected goats, which will enable a reliable genetic test for the early-in-life prediction of horn status in goats.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-27
    Description: Objective Colon cancer (CC) is one of the most common cancers whose progression is regulated by a number of factors, including circular RNAs (circRNAs). Nonetheless, circ_0038718 is a novel circRNA, and its regulatory mechanism in CC remains unclear. Methods Real-time quantitative PCR (qRT-PCR) was performed to detect the expression of circ_0038718, miR-195-5p and Axin2. Western blot was conducted to determine the protein expression of Axin2 and the key proteins on Wnt/β-catenin signaling pathway. Oligo (dT) 18 primers and RNase R were employed to identify the circular features of circ_0038718, and the location of circ_0038718 in cells was detected via nucleocytoplasmic separation. Dual-luciferase reporter assay and RNA binding protein immunoprecipitation experiment were carried out to investigate the molecular mechanism of circ_0038718/miR-195-5p/Axin2. Additionally, MTT assay was conducted to assess cell proliferation; Transwell assay was performed to evaluate cell migration and invasion, respectively. The effect of circ_0038718 on CC tumor growth was tested through tumor formation in nude mice. Results circ_0038718 was highly expressed in CC and could sponge miR-195-5p in cytoplasm. Silencing circ_0038718 suppressed the proliferative, migratory and invasive abilities of CC cells, while the promoting effect of high circ_0038718 expression on CC cells was reversed upon miR-195-5p over-expression. Axin2 was a downstream target of miR-195-5p and could regulate the Wnt/β-catenin signaling pathway. Axin2 expression was modulated by circ_0038718/miR-195-5p. Knockdown of Axin2 could also attenuate the promoting effect of high circ_0038718 expression on CC cell malignant progression, thus inhibiting tumor growth. Conclusion circ_0038718 is able to facilitate CC cell malignant progression via the miR-195-5p/Axin2 axis, which will provide a new idea for finding a novel targeted treatment of CC.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...