ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.02. Exploration geophysics  (5)
  • apulia
  • Frontiers  (3)
  • Wiley  (2)
  • American Chemical Society
  • American Physical Society
  • 2025-2025
  • 2020-2022  (5)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2021-06-14
    Description: Southwestern Sicily is an area of infrequent seismic activity; however, some studies carried out in the archaeological Selinunte site suggest that, between the fourth century BC and the early Middle Ages, probably at least two earthquakes strucked this area with enough energy to damage and cause the collapse and kinematics of much of the architecture of Selinunte. Take into account that, in 2008, a noninvasive archaeological prospection and traditional data gathering methods along the Acropolis north fortifications were carried out. Following these first studies, after about 10 years, a new geophysical campaign was carried out. This second campaign benefited from the application of modern technologies for the acquisition and processing of the point cloud data on the northern part of the Acropolis, like terrestrial laser scanning and unmanned aerial vehicle photogrammetry. In this paper, we present the application of these techniques and a strategy for their integration for the 3D modelling of buildings and cultural heritages. We show how the integration of data acquired independently by these two techniques is an added value able to overcome the intrinsic limits of the individual techniques. The application to Selinunte's Acropolis allowed it to highlight and measure with high accuracy fractures, dislocation, inclinations of walls, depressions of some areas and other interesting observations, which may be important starting points for future investigations.
    Description: Published
    Description: 153-165
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: 3D reconstruction ; archaeological survey ; digital elevation model ; Selinunte Archaeological Park ; terrestrial laser scanning ; unmanned aerial vehicle photogrammetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics ; 05.02. Data dissemination ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-01
    Description: When sedimentation rates overtake tectonic rates, the detection of ongoing tectonic deformation signatures becomes particularly challenging. The Northern Apennines orogen is one such case where a thick Plio-Pleistocene foredeep sedimentary cover blankets the fold-and-thrust belt, straddling from onshore (Po Plain) to offshore (Adriatic Sea), leading to subtle or null topo-bathymetric expression of the buried structures. The seismic activity historically recorded in the region is moderate; nonetheless, seismic sequences nearing magnitude 6 punctuated the last century, and even some small tsunamis were reported in the coastal locations following the occurrence of offshore earthquakes. In this work, we tackled the problem of assessing the potential activity of buried thrusts by analyzing a rich dataset of 2D seismic reflection profiles and wells in a sector of the Northern Apennines chain located in the near-offshore of the Adriatic Sea. This analysis enabled us to reconstruct the 3D geometry of eleven buried thrusts. We then documented the last 4 Myr slip history of four of such thrusts intersected by two high-quality regional cross-sections that were depth converted and restored. Based on eight stratigraphic horizons with well-constrained age determinations (Zanclean to Middle Pleistocene), we determined the slip and slip rates necessary to recover the observed horizon deformation. The slip rates are presented through probability density functions that consider the uncertainties derived from the horizon ages and the restoration process. Our results show that the thrust activation proceeds from the inner to the outer position in the chain. The slip history reveals an exponential reduction over time, implying decelerating slip-rates spanning three orders of magnitudes (from a few millimeters to a few hundredths of millimeters per year) with a major slip-rate change around 1.5 Ma. In agreement with previous works, these findings confirm the slip rate deceleration as a widespread behavior of the Northern Apennines thrust faults.
    Description: Published
    Description: 664288
    Description: 1T. Struttura della Terra
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active fault ; buried thrust ; slip rate ; trishear ; restoration ; sediment decompaction ; Northern Apennines ; Italy ; 04.02. Exploration geophysics ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers
    In:  Argnani, A. (2020). Commentary: deformation and fault propagation at the lateral termination of a subduction zone: the Alfeo Fault system in the calabrian Arc, southern Italy. Front. Earth Sci. 8, 602506. doi:10.3389/feart.2020.602506
    Publication Date: 2021-05-12
    Description: Argnani (2020) raised concerns about our interpretation of the Alfeo Fault System (AFS) as a lithospheric tear bounding the Calabrian Arc (Maesano et al., 2020). Some of these concerns arise from elements overlooked by Argnani (2020); others are marginally related to our work; none of them implies possible changes in our results in the absence of newer data. We briefly discuss these issues in the following.
    Description: Published
    Description: 644544
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: lithospheric tear fault ; seismic stratigraphy ; Calabrian subduction ; Ionian Sea ; Italy ; decoupling ; fault propagation ; Calabrian Arc ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-04
    Description: The Calabrian Arc subduction, southern Italy, is a critical structural element in the geodynamic evolution of the central Mediterranean basin. It is a narrow, northwestdipping slab bordered to the southwest by the Alfeo Fault System (AFS) and to the northeast by a gradual transition to a collision. We used a dense set of two-dimensional high-penetration (up to 12 s) multichannel seismic reflection profiles to build a threedimensional model that spans the AFS for over 180 km of its length. We find that the AFS is made up of four deep-seated major blind segments that cut through the lower plate, offset the subduction interface, and only partially propagate upward across the accretionary wedge in the upper plate. These faults evolve with a scissor-like mechanism (mode III of rupture propagation). The shallow part of the accretionary wedge is affected by secondary deformation features well aligned with the AFS at depth but also mechanically decoupled from it. Despite the decoupling, the syn-tectonic Pliocene-Holocene deposits that fill in the accommodation space generated by the AFS activity at depth, constrain the age of inception of the AFS and allows us to estimate its throw and propagation rates. The maximum throw value is 6,000 m in the NW sector and decreases to the SE. Considering the age of faulting, the fault throw rate decreases accordingly from 2.31 mm/yr to 1 mm/yr. The propagation rate decreases from 62 mm/yr to 15 mm/yr during the Pliocene-Pleistocene, suggesting that also the Calabrian subduction process should have slowed down accordingly. The detailed spatial and temporal reconstruction of this type of faults can reveal necessary information about the evolution of subduction systems.
    Description: Published
    Description: id 107
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: tear fault ; fault propagation ; decoupling ; subduction ; Calabrian Arc ; Italy ; 04.04. Geology ; 04.02. Exploration geophysics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...