ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (160)
  • biodegradation  (80)
  • pH  (34)
  • corrosion
  • growth
  • Springer  (160)
  • BioMed Central
  • 2025-2025
  • 2020-2024
  • 2020-2022
  • 2010-2014
  • 2005-2009  (2)
  • 1995-1999  (158)
  • Energy, Environment Protection, Nuclear Power Engineering  (133)
  • Electrical Engineering, Measurement and Control Technology  (23)
  • Sociology  (4)
Collection
  • Articles  (160)
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Risk analysis 19 (1999), S. 915-931 
    ISSN: 1539-6924
    Keywords: Yucca Mountain ; performance assessment ; logic tree ; high-level radioactive waste ; Monte Carlo ; expert judgment ; repository ; groundwater ; climate ; infiltration ; percolation ; hydrothermal ; corrosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The Electric Power Research Institute (EPRI) has sponsored the development of a model to assess the long-term, overall “performance” of the candidate spent fuel and high-level radioactive waste (HLW) disposal facility at Yucca Mountain, Nevada. The model simulates the processes that lead to HLW container corrosion, HLW mobilization from the spent fuel, and transport by groundwater, and contaminated groundwater usage by future hypothetical individuals leading to radiation doses to those individuals. The model must incorporate a multitude of complex, coupled processes across a variety of technical disciplines. Furthermore, because of the very long time frames involved in the modeling effort (≫104 years), the relative lack of directly applicable data, and many uncertainties and variabilities in those data, a probabilistic approach to model development was necessary. The developers of the model chose a logic tree approach to represent uncertainties in both conceptual models and model parameter values. The developers felt the logic tree approach was the most appropriate. This paper discusses the value and use of logic trees applied to assessing the uncertainties in HLW disposal, the components of the model, and a few of the results of that model. The paper concludes with a comparison of logic trees and Monte Carlo approaches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 3 (1995), S. 23-29 
    ISSN: 1572-8900
    Keywords: Composting ; starch-based biopolymers ; enzymatic degradation ; biodegradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The aim of this study was to evaluate the suitability of in vitro enzymatic methods for assaying the biodegradability of new starch-based biopolymers. The materials studied included commercial starch-based materials and thermoplastic starch films prepared by extrusion from glycerol and native potato starch, native barley starch, or crosslinked amylomaize starch. Enzymatic hydrolysis was performed using excessBacillus licheniformis α-amylase andAspergillus niger glucoamylase at 37°C and 80°C. The degree of degradation was determined by measuring the dissolved carbohydrates and the weight loss of the samples. Biodegradation was also determined by incubating the samples in a compost environment and measuring the weight loss after composting. The results indicated that the enzymatic method is a rapid means of obtaining preliminary information about the biodegradability of starch-based materials. Other methods are needed to investigate more accurately the extent of biodegradability, especially in the case of complex materials in which starch is blended with other polymers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 6 (1998), S. 115-120 
    ISSN: 1572-8900
    Keywords: Polyaromatics ; free-radical polymerization ; biodegradation ; peroxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Polymers formed from peroxidase-based free-radical polymerization reactions were characterized for rates of mineralization against lignin and humic acid controls. Degradation studies were carried out in soil systems over 202 days and cumulative net CO2 was determined. Whereas mineralization of the humic acid and alkali lignin controls totaled ca. 20% at the end of the test exposure, there was essentially no net mineralization of the hydrolytic lignin control. Mineralization of the test samples totaled 5% for poly(p-ethylphenol) and 11% for poly(m-cresol). At the same time, mineralization of the poly(p-phenyl phenol) totaled 64%. Conversely, the readily biodegradable polymers cellulose and PHB reached values of 91 to 97% in less than 60 days. Our data suggest that the mineralization kinetics of the enzymatically derived polyaromatics mimic those of the naturally occurring heteropolymers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-8900
    Keywords: Nonionic surfactants ; biodegradation ; alkylphenol poly(ethoxylate)s ; alkyl poly(ethoxylate)s ; polyethylene glycol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Different bacterial strains able to attack polyoxyethylene-type nonionic surfactants were isolated by enrichment procedure from the surface waters of the Arno River. Alkylphenol polyethoxylates and alkyl polyethoxylates, as well as polyethylene glycols, were degraded and assimilated by bacterial strains in axenic cultures. Degradative routes of polyethyleneoxide chains were investigated by matching each bacterial isolate with several types of nonionic surfactants and polyethers and by the identification of their degradation products isolated during aerobic digestion experiments. In accordance with previous reports, the first attack led to the shortening of the poly(oxyethylene) chains of the nonionic surfactants. It was found that the strains able to degrade PEG segments of nonionic surfactants possess enzymatic systems unable to degrade free PEGs, whereas those degrading the latter substrates cannot degrade PEG segments coupled to hydrophobic moieties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 3 (1995), S. 187-197 
    ISSN: 1572-8900
    Keywords: Poly(3-hydroxybutyrate) ; film ; biodegradation ; microbial degradation ; colonization ; colonization kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract To clarify the mechanism of microbial degradation owing to colonization ofPseudomonas sp. strain SC-17 on a poly(3-hydroxybutyrate) (PHB) cast film surface, morphological and spectroscopic analyses of the degraded film were investigated and colonization kinetics on the films is discussed. By spectroscopic analysis of unique hemispherical degradation marks, cells of strain SC-17 adhering to the marks' surface were confirmed. To account for the hemispherical hole formation and their linear enlargement with culture time, a three-dimensional colony growth model toward the interior of the film was developed. The model explained the hemispherical hole formation well. It was concluded that the hemispherical holes resulted from the colonization of strain SC-17 on the film surfaces. It was further determined that the microbial degradation by strain SC-17 is initiated from small pits formed on the PHB film surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 4 (1996), S. 123-129 
    ISSN: 1572-8900
    Keywords: Poly(γ-glutamic acid) ; poly(ε-lysine) ; hydrogel ; biodegradation ; enzymatic degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Biodegradable hydrogels prepared by γ-irradiation from microbial poly(amino acid)s are reviewed. pH-sensitive hydrogels were prepared by means of γ-irradiation of poly(γ-glutamic acid) (PGA) produced byBacillus subtilis IFO3335 and poly(ε-lysine) (PL) produced byStreptomyces albulus in aqueous solutions. The preparation conditions, swelling equilibria, hydrolytic degradation, and enzymatic degradation of these hydrogels were studied. A hydrogel with a wide variety of swelling behaviors has been produced by γ-irradiation from a mixture solution of PGA and PL.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-8900
    Keywords: Copolyesterether ; succinic anhydride ; chain-extension reaction ; biodegradation ; activated sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Chain-extension reactions were carried out using titanium-iso-propoxide (TIP) as a catalyst for a series of polyesters or copolyesterethers with low molecular weights (M n =1500–10,000) synthesized by the ring-opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO). The copolymers having aM n from 25,000 to 50,000 of different properties were obtained. Both the melting point (T m ) and the fusion heat (δH), which indicate the crystallinity of the copolymers, rose with an increase in SA content in the copolymers. Semitransparent films were prepared by compression molding of the copolymers. The biodegradation of the copolymer films was evaluated by enzymatic hydrolysis by lipases and by an aerobic gas evolution test in standard activated sludge. The hydrolyzability of these copolymers by three kinds of lipases was affected by their copolymer composition SA/EO, form, andM n . The copolyesterether (SA/EO=43/57,M n =48,900) was more easily biodegraded by standard activated sludge compared to the polyester (SA/EO=47/53,M n =36,300).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 6 (1998), S. 23-29 
    ISSN: 1572-8900
    Keywords: Polyethylene ; polystyrene ; biodegradation ; copolymerization ; hydrolytic degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract 2-Methylene-1,3-dioxepane (MDP) was copolymerized with ethylene (E) at a pressure of approximately 1000 psi and a temperature of approximately 70°C with AIBN as the free radical initiator. The copolymers obtained, poly(MDP-co-E), were characterized by elemental analysis, IR, 1H-NMR and 13C-NMR spectroscopy, DSC, and GPC. The copolymers contained 2–15 mol% ester units. MDP was also copolymerized with styrene (S) at 120°C with di-t-butyl peroxide as the initiator to prepare the copolymer, poly(MDP-co-S). The number-average molecular weights of both types of copolymers were in the range of 6000 to 11,000, and the weight-average molecular weights were in the range of 9000 to 17,000. The melting temperatures of poly(MDP-co-E) decreased with increasing ester unit content in the copolymer. For the MDP-S copolymers, the glass transition temperatures decreased with increasing ester unit content. Both poly(MDP-co-E) and poly(MDP-co-S) were degraded by methanolysis, and their molecular weights decreased by the expected amounts based on the ester unit content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-8900
    Keywords: Starch ; PHBV ; PHA ; plastic ; blends ; biodegradation ; soil ; compost
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Injection molded specimens were prepared by blending poly (hydroxybutyrate-co-valerate) (PHBV) with cornstarch. Blended formulations incorporated 30% or 50% starch in the presence or absence of poly-(ethylene oxide) (PEO), which enhances the adherence of starch granules to PHBV. These formulations were evaluated for their biodegradability in natural compost by measuring changes in physical and chemical properties over a period of 125 days. The degradation of plastic material, as evidenced by weight loss and deterioration in tensile properties, correlated with the amount of starch present in the blends (neat PHBV 〈 30% starch 〈 50% starch). Incorporation of PEO into starch-PHBV blends had little or no effect on the rate of weight loss. Starch in blends degraded faster than PHBV and it accelerated PHBV degradation. Also, PHBV did not retard starch degradation. After 125 days of exposure to compost, neat PHBV lost 7% of its weight (0.056% weight loss/day), while the PHBV component of a 50% starch blend lost 41% of its weight (0.328% weight loss/day). PHB and PHV moieties within the copolymer degraded at similar rates, regardless of the presence of starch, as determined by 1H-NMR spectroscopy. GPC analyses revealed that, while the number average molecular weight (Mn) of PHBV in all exposed samples decreased, there was no significant difference in this decrease between neat PHBV as opposed to PHBV blended with starch. SEM showed homogeneously distributed starch granules embedded in a PHBV matrix, typical of a filler material. Starch granules were rapidly depleted during exposure to compost, increasing the surface area of the PHBV matrix.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 6 (1998), S. 197-202 
    ISSN: 1572-8900
    Keywords: Starch ; cellulose ; biodegradation ; ISO/DIS 14855:1997 ; ASTM D 5338-92 ; priming effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In order to verify the response of the controlled composting test method (i.e., the ISO/DIS 14855:1997, the ASTM D 5338-92, or the CEN counterpart) to starch at different concentrations, the maximum amount prescribed by the test method (100 g) and lower amounts (60 and 30 g), as if starch were a coingredient in a blend, were tested. After 44 days of incubation (at a constant temperature of 58°C) the biodegradation curves were in a plateau phase, displaying the following final values (referred to a nominal starch initial amount of 100 g): starch 100 g, 97.5%; starch 60 g, 63.7%; and starch 30 g, 32.5%. The data show a CO2 evolution roughly equal, in each case, to the theoretical maximum, indicating a complete starch mineralization. We cannot discern whether the deviations found at lower concentrations are caused by a priming effect. In any case, the extent of the deviations is not high and is acceptable in biodegradation studies. The average biodegradation of cellulose, obtained gathering four independent experiments with 11 biodegradation curves, turned out to be 96.8 ± 6.7% (SD) after 47 ± 1 days. The data indicate that the controlled composting is a reliable test method also for starch and cellulose and, consequently, for starch-based and cellulose-based materials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...