ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wave scattering and diffraction  (4)
  • Wiley-Blackwell  (4)
  • Springer Nature
  • 2020-2022
  • 2010-2014  (4)
  • 1
    Publication Date: 2020-12-15
    Description: Seismogram envelopes recorded at Campi Flegrei caldera show diffusive characteristics as well as steep amplitude increases in the intermediate and late coda, which can be related to the presence of a non-uniformly scattering medium. In this paper, we first show the results of a simulation with a statistical model considering anisotropic scattering interactions, in order to match coda-envelope duration and shape.We consider as realistic parameters for a volcanic caldera the presence of large square root velocity fluctuations (10 per cent) and two typical correlation lengths for such an heterogeneous crust, a = 0.1 and 1 km. Then, we propose the inclusion of a diffusive boundary condition in the stochastic description of multiple scattering, in order to model intermediate and late coda intensities, and particularly the sharp intensity peaks at some stations in the caldera. Finally, we show that a reliable 2-D synthetic model of the envelopes produced by earthquakes vertically sampling a small region can be obtained including a single drastic change of the scattering properties of the volcano, that is, a caldera rim of radius 3 km, and sections varying between 2 and 3 km. These boundary conditions are diffusive, which signifies that the rim must have more scattering potential than the rest of the medium, with its diffusivity 2–3 orders of magnitude lower than the one of the background medium, so that the secondary sources on its interface(s) could enhance coda intensities. We achieve a good first-order model of high-frequency (18 Hz) envelope broadening adding to the Monte Carlo solution for the incident flux the secondary source effects produced by a closed annular boundary, designed on the caldera rim signature at 1.5 km depth. At lower frequencies (3 Hz) the annular boundary controls the intermediate and late coda envelope behaviour, in a way similar to an extended diffusive source. In our interpretation, the anomalous intensities observed at several stations and predicted by the final Monte Carlo solutions are mainly due to the diffusive transmission reflection from a scattering object of increased scattering power, and are controlled by its varying thickness.
    Description: This work was carried out under the HPC-Europa2 project (project number: 228398) with the support of the European Commission Capacities Area-Research Infrastructures Initiative. We thank the whole staff at EPCC (Edinburgh Parallel Computing Centre) in Edinburgh and particularly Dr. Adam Carter for their help in both developing and parallelizing the code. The challenging comments and suggestions of the editor and two anonymous reviewers helped both in focusing the aim and in overcoming the strong limits of a previous version of the paper.
    Description: Published
    Description: 1102–1119
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical solutions; ; Seismic anisotropy; ; Seismic attenuation ; Seismic tomography ; Wave scattering and diffraction ; Calderas ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Prominent arrivals in the coda of seismograms from the wider Alpine area can be associated with lateral reflections of Love waves at the northern Apennines mountain chain (Italy), where structural heterogeneity causes an abrupt contrast in phase velocity. We discuss an approach to image lateral heterogeneity from reflected surface waves using intermediate-period, three- component coda waveforms as sources for an adjoint wavefield that propagates the reflections backward in time. We numerically compute three-dimensional sensitivity kernels for the dependence of coda waveforms on P velocity, S velocity and density, based upon correlations between the adjoint and the regular forward wavefields. We consider synthetic coda waveforms for a simplified model of the northern Apennines, as well as real coda observations from five moderate magnitude earthquakes (M W 4.6–5.6) in the southern Alps. Wave propagation is simulated using the spectral-element method, for which a 3-D regional earth model is used in the case of real data. Single and combined event sensitivity kernels provide clear images of the reflectivity associated with the northern Apennines in kernels for density and S-wave speed. The kernels show that surface wave reflections occur near the axial zone of the mountain chain. Apart from the Apennines, the approach is able to image other smaller reflectivity patches from the coda waveforms, like the Ivrea zone in the southern Alps. Our coda misfit kernels can be integrated in a gradient-based waveform tomography, where they could enhance the shar pness of the model at lateral discontinuities.
    Description: Published
    Description: 543–554
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Tomography; ; Computational seismology ; Wave scattering and diffraction ; Crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Local and regional seismicity jointly recorded by two dense small aperture arrays, one installed at surface and one at 1.3 km depth, constitutes an interesting data set useful for coda observations. Applying array techniques to earthquakes recorded at the two arrays we measure slowness, backazimuth and correlation coefficient of the coherent coda wave signals in five frequency bands in the range 1–10 Hz. Slowness distributions show marked differences between surface and underground, with slow signals at surface (slowness greater than 1.0 s km−1) that are not observed underground. We interpret these coherent signals as surface waves produced by the interaction of body waves with the free surface characterized by rough topography. The backazimuth values measured in the frequency bands centred at 1.5 and 3 Hz are almost uniformly distributed between 0 and 360◦, while those measured at higher frequencies show different distributions between surface and underground. On the contrary, the earthquake envelopes show very similar coda shapes between surface and underground recordings, with an almost constant coda-amplitude ratio (between 4 and 8) in a wide frequency range.
    Description: Published
    Description: 367-371
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Coda waves ; Wave scattering and diffraction ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this work, we present regional maps of the inverse intrinsic quality factor (Qi −1), the inverse scattering quality factor (Qs −1) and total inverse quality factor (Qt −1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create ‘2-D probabilistic maps’ of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.
    Description: This work has been partially supported by the Spanish project Ephestos, CGL2011–29499-C02–01, by the EU project EC-FP7 MEDiterranean SUpersite Volcanoes (MED-SUV), by the Basque Government researcher training program BFI09.277 and by the Regional project ‘Grupo de Investigaci´on en Geof´ısica y Sismolog´ıa de la Junta de Andaluc´ıa, RNM104.’ Edoardo del Pezzo was partly supported by DPC-INGV projects UNREST SPEED and V2 (Precursori).
    Description: Published
    Description: 1957-1969
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic attenuation; ; Seismic tomography ; Volcano seismology ; Wave scattering and diffraction ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...