ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Nature  (205)
  • American Association for the Advancement of Science
  • Cambridge University Press
  • Wiley-Blackwell
  • 2020-2024  (212)
  • 2015-2019
  • 1975-1979
  • 1960-1964
  • 2024  (212)
Collection
Keywords
Publisher
Language
Years
  • 2020-2024  (212)
  • 2015-2019
  • 1975-1979
  • 1960-1964
Year
  • 1
    Publication Date: 2024-06-27
    Description: Non-technical summary Scenarios compatible with the Paris agreement's temperature goal of 1.5 °C involve carbon dioxide removal measures - measures that actively remove CO2 from the atmosphere - on a massive scale. Such large-scale implementations raise significant ethical problems. Van Vuuren et al. (2018), as well as the current IPCC scenarios, show that reduction in energy and or food demand could reduce the need for such activities. There is some reluctance to discuss such societal changes. However, we argue that policy measures enabling societal changes are not necessarily ethically problematic. Therefore, they should be discussed alongside techno-optimistic approaches in any kind of discussions about how to respond to climate change. Technical summary The 1.5 °C goal has given impetus to carbon dioxide removal (CDR) measures, such as bioenergy combined with carbon capture and storage, or afforestation. However, land-based CDR options compete with food production and biodiversity protection. Van Vuuren et al. (2018) looked at alternative pathways including lifestyle changes, low-population projections, or non-CO2 greenhouse gas mitigation, to reach the 1.5 °C temperature objective. Underlined by the recently published IPCC AR6 WGIII report, they show that demand-side management measures are likely to reduce the need for CDR. Yet, policy measures entailed in these scenarios could be associated with ethical problems themselves. In this paper, we therefore investigate ethical implications of four alternative pathways as proposed by Van Vuuren et al. (2018). We find that emission reduction options such as lifestyle changes and reducing population, which are typically perceived as ethically problematic, might be less so on further inspection. In contrast, options associated with less societal transformation and more techno-optimistic approaches turn out to be in need of further scrutiny. The vast majority of emission reduction options considered are not intrinsically ethically problematic; rather everything rests on the precise implementation. Explicitly addressing ethical considerations when developing, advancing, and using integrated assessment scenarios could reignite debates about previously overlooked topics and thereby support necessary societal discourse. Social media summary Policy measures enabling societal changes are not necessarily as ethically problematic as commonly presumed and reduce the need for large-scale CDR
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-24
    Description: Background: Northern ecosystems are strongly influenced by herbivores that differ in their impacts on the ecosystem. Yet the role of herbivore diversity in shaping the structure and functioning of tundra ecosystems has been overlooked. With climate and land-use changes causing rapid shifts in Arctic species assemblages, a better understanding of the consequences of herbivore diversity changes for tundra ecosystem functioning is urgently needed. This systematic review synthesizes available evidence on the effects of herbivore diversity on different processes, functions, and properties of tundra ecosystems. Methods: Following a published protocol, our systematic review combined primary field studies retrieved from bibliographic databases, search engines and specialist websites that compared tundra ecosystem responses to different levels of vertebrate and invertebrate herbivore diversity. We used the number of functional groups of herbivores (i.e., functional group richness) as a measure of the diversity of the herbivore assemblage. We screened titles, abstracts, and full texts of studies using pre-defined eligibility criteria. We critically appraised the validity of the studies, tested the influence of different moderators, and conducted sensitivity analyses. Quantitative synthesis (i.e., calculation of effect sizes) was performed for ecosystem responses reported by at least five articles and meta-regressions including the effects of potential modifiers for those reported by at least 10 articles. Review findings: The literature searches retrieved 5944 articles. After screening titles, abstracts, and full texts, 201 articles including 3713 studies (i.e., individual comparisons) were deemed relevant for the systematic review, with 2844 of these studies included in quantitative syntheses. The available evidence base on the effects of herbivore diversity on tundra ecosystems is concentrated around well-established research locations and focuses mainly on the impacts of vertebrate herbivores on vegetation. Overall, greater herbivore diversity led to increased abundance of feeding marks by herbivores and soil temperature, and to reduced total abundance of plants, graminoids, forbs, and litter, plant leaf size, plant height, and moss depth, but the effects of herbivore diversity were difficult to tease apart from those of excluding vertebrate herbivores. The effects of different functional groups of herbivores on graminoid and lichen abundance compensated each other, leading to no net effects when herbivore effects were combined. In turn, smaller herbivores and large-bodied herbivores only reduced plant height when occurring together but not when occurring separately. Greater herbivore diversity increased plant diversity in graminoid tundra but not in other habitat types. Conclusions: This systematic review underscores the importance of herbivore diversity in shaping the structure and function of Arctic ecosystems, with different functional groups of herbivores exerting additive or compensatory effects that can be modulated by environmental conditions. Still, many challenges remain to fully understand the complex impacts of herbivore diversity on tundra ecosystems. Future studies should explicitly address the role of herbivore diversity beyond presence-absence, targeting a broader range of ecosystem responses and explicitly including invertebrate herbivores. A better understanding of the role of herbivore diversity will enhance our ability to predict whether and where shifts in herbivore assemblages might mitigate or further amplify the impacts of environmental change on Arctic ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-21
    Description: Background: Wildfires are recognized as an important ecological component of larch-dominated boreal forests in eastern Siberia. However, long-term fire-vegetation dynamics in this unique environment are poorly understood. Recent paleoecological research suggests that intensifying fire regimes may induce millennial-scale shifts in forest structure and composition. This may, in turn, result in positive feedback on intensifying wildfires and permafrost degradation, apart from threatening human livelihoods. Most common fire-vegetation models do not explicitly include detailed individual-based tree population dynamics, but a focus on patterns of forest structure emerging from interactions among individual trees may provide a beneficial perspective on the impacts of changing fire regimes in eastern Siberia. To simulate these impacts on forest structure at millennial timescales, we apply the individual-based, spatially explicit vegetation model LAVESI-FIRE, expanded with a new fire module. Satellite-based fire observations along with fieldwork data were used to inform the implementation of wildfire occurrence and adjust model parameters. Results: Simulations of annual forest development and wildfire activity at a study site in the Republic of Sakha (Yakutia) since the Last Glacial Maximum (c. 20,000 years BP) highlight the variable impacts of fire regimes on forest structure throughout time. Modeled annual fire probability and subsequent burned area in the Holocene compare well with a local reconstruction of charcoal influx in lake sediments. Wildfires can be followed by different forest regeneration pathways, depending on fire frequency and intensity and the pre-fire forest conditions. We find that medium-intensity wildfires at fire return intervals of 50 years or more benefit the dominance of fire-resisting Dahurian larch (Larix gmelinii (Rupr.) Rupr.), while stand-replacing fires tend to enable the establishment of evergreen conifers. Apart from post-fire mortality, wildfires modulate forest development mainly through competition effects and a reduction of the model’s litter layer. Conclusion: With its fine-scale population dynamics, LAVESI-FIRE can serve as a highly localized, spatially explicit tool to understand the long-term impacts of boreal wildfires on forest structure and to better constrain interpretations of paleoecological reconstructions of fire activity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3International Journal of Biometeorology, Springer Nature, 68(4), pp. 1-17, ISSN: 0020-7128
    Publication Date: 2024-06-21
    Description: The Great Lakes region of North America has warmed by 1–2 °C on average since pre-industrial times, with the most pronounced changes observable during winter and spring. Interannual variability in temperatures remains high, however, due to the influence of ocean-atmosphere circulation patterns that modulate the warming trend across years. Variations in spring temperatures determine growing season length and plant phenology, with implications for whole ecosystem function. Studying how both internal climate variability and the “secular” warming trend interact to produce trends in temperature is necessary to estimate potential ecological responses to future warming scenarios. This study examines how external anthropogenic forcing and decadal-scale variability influence spring temperatures across the western Great Lakes region and estimates the sensitivity of regional forests to temperature using long-term growth records from tree-rings and satellite data. Using a modeling approach designed to test for regime shifts in dynamic time series, this work shows that mid-continent spring climatology was strongly influenced by the 1976/1977 phase change in North Pacific atmospheric circulation, and that regional forests show a strengthening response to spring temperatures during the last half-century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-17
    Description: As global temperatures continue to rise, a key uncertainty of terrestrial carbon (C)–climate feedback is the rate of C loss upon abrupt permafrost thaw. This type of thawing—termed thermokarst—may in turn accelerate or dampen the response of microbial degradation of soil organic matter and carbon dioxide (CO2) release to climate warming. However, such impacts have not yet been explored in experimental studies. Here, by experimentally warming three thermo-erosion gullies in an upland thermokarst site combined with incubating soils from five additional thermokarst-impacted sites on the Tibetan Plateau, we investigate how warming responses of soil CO2 release would change upon upland thermokarst formation. Our results show that warming-induced increase in soil CO2 release is ~5.5 times higher in thermokarst features than the adjacent non-thermokarst landforms. This larger warming response is associated with the lower substrate quality and higher abundance of microbial functional genes for recalcitrant C degradation in thermokarst-affected soils. Taken together, our study provides experimental evidence that warming-associated soil CO2 loss becomes stronger upon abrupt permafrost thaw, which could exacerbate the positive soil C–climate feedback in permafrost-affected regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-17
    Description: Open-conduit basaltic volcanoes can be characterised by sudden large explosive events (paroxysms) that interrupt normal effusive and mild explosive activity. In June-August 2019, one major explosion and two paroxysms occurred at Stromboli volcano (Italy) within only 64 days. Here, via a multifaceted approach using clinopyroxene, we show arrival of mafic recharges up to a few days before the onset of these events and their effects on the eruption pattern at Stromboli, as a prime example of a persistently active, open-conduit basaltic volcano. Our data indicate a rejuvenated Stromboli plumbing system where the extant crystal mush is efficiently permeated by recharge magmas with minimum remobilisation promoting a direct linkage between the deeper and the shallow reservoirs that sustains the currently observed larger variability of eruptive behaviour. Our approach provides vital insights into magma dynamics and their effects on monitoring signals demonstrating the power of petrological studies in interpreting patterns of surficial activity.
    Description: Published
    Description: 7717
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Stromboli volcano ; clinopyroxene ; paroxysmal activity ; Eruptive timescales ; Thermobarometry ; Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-13
    Description: All Rights Reserved
    Description: Predicting coastal change depends upon our knowledge of postglacial relative sea-level variability, partly controlled by glacio-isostatic responses to ice-sheet melting. Here, we reconstruct the postglacial relative sea-level changes along the Caribbean and Pacific coasts of northwestern South America by numerically solving the sea-level equation with two scenarios of mantle viscosity: global standard average and high viscosity. Our results with the standard model (applicable to the Pacific coast) agree with earlier studies by indicating a mid-Northgrippian high stand of ~2 m. The high-viscosity simulation (relevant to the Caribbean coast) shows that the transition from far- to intermediate-field influence of the Laurentide Ice Sheet occurs between Manzanillo del Mar and the Gulf of Morrosquillo. South of this location, the Colombian Caribbean coast has exhibited a still stand with a nearly constant Holocene relative sea level. By analyzing our simulations considering sea-level indicators, we argue that tectonics is more prominent than previously assumed, especially along the Caribbean coast. This influence prevents a simplified view of regional relative sea-level changes on the northwestern South American coast.
    Description: Published
    Description: 28-43
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-13
    Description: A detailed study of past eruptive activity is crucial to understanding volcanic systems and associated hazards. We present a meticulous stratigraphic analysis, a comprehensive chronological reconstruction, thorough tephra mapping, and a detailed analysis of the interplay between primary and secondary volcanic processes of the post-900 AD activity of La Fossa caldera, including the two main systems of La Fossa volcano and Vulcanello cones (Vulcano Island, Italy). Our analyses demonstrate how the recent volcanic activity of La Fossa caldera is primarily characterized by effusive and Strombolian activity and Vulcanian eruptions, combined with sporadic sub-Plinian events and both impulsive and long-lasting phreatic explosions, all of which have the capacity to severely impact the entire northern sector of Vulcano island. We document a total of 30 eruptions, 25 from the La Fossa volcano and 5 from Vulcanello cones, consisting of ash to lapilli deposits and fields of ballistic bombs and blocks. Volcanic activity alternated with significant erosional phases and volcaniclastic re-sedimentation. Large-scale secondary erosion processes occur in response to the widespread deposition of fine-grained ash blankets, both onto the active cone of La Fossa and the watersheds conveying their waters into the La Fossa caldera. The continuous increase in ground height above sea level, particularly in the western sector of the caldera depression where key infrastructure is situated, is primarily attributed to long-term alluvial processes. We demonstrate how a specific methodological approach is key to the characterization and hazard assessment of low-to-high intensity volcanic activity, where tephra is emitted over long time periods and is intercalated with phases of erosion and re-sedimentation.
    Description: Open access funding provided by Istituto Nazionale di Geofisica e Vulcanologia within the CRUI-CARE Agreement.
    Description: Published
    Description: 47
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Active caldera; Aeolian archipelago; Historical eruptions; Island of Vulcano; Tephra; Volcano stratigraphy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-11
    Description: The Southern Ocean is a major region of ocean carbon uptake, but its future changes remain uncertain under climate change. Here we show the projected shift in the Southern Ocean CO2 sink using a suite of Earth System Models, revealing changes in the mechanism, position and seasonality of the carbon uptake. The region of dominant CO2 uptake shifts from the Subtropical to the Antarctic region under the high-emission scenario. The warming-driven sea-ice melt, increased ocean stratification, mixed layer shoaling, and a weaker vertical carbon gradient is projected to together reduce the winter de-gassing in the future, which will trigger the switch from mixing-driven outgassing to solubility-driven uptake in the Antarctic region during the winter season. The future Southern Ocean carbon sink will be poleward-shifted, operating in a hybrid mode between biologically-driven summertime and solubility-driven wintertime uptake with further amplification of biologically-driven uptake due to the increasing Revelle Factor.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 15(1), pp. 3232-3232, ISSN: 2041-1723
    Publication Date: 2024-05-31
    Description: Sea-level rise submerges terrestrial permafrost in the Arctic, turning it into subsea permafrost. Subsea permafrost underlies ~ 1.8 million km2 of Arctic continental shelf, with thicknesses in places exceeding 700 m. Sea-level variations over glacial-interglacial cycles control subsea permafrost distribution and thickness, yet no permafrost model has accounted for glacial isostatic adjustment (GIA), which deviates local sea level from the global mean due to changes in ice and ocean loading. Here we incorporate GIA into a pan-Arctic model of subsea permafrost over the last 400,000 years. Including GIA significantly reduces present-day subsea permafrost thickness, chiefly because of hydro-isostatic effects as well as deformation related to Northern Hemisphere ice sheets. Additionally, we extend the simulation 1000 years into the future for emissions scenarios outlined in the Intergovernmental Panel on Climate Change’s sixth assessment report. We find that subsea permafrost is preserved under a low emissions scenario but mostly disappears under a high emissions scenario.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...