ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (529)
  • 2005-2009  (179)
  • 2000-2004  (350)
  • 2005  (179)
  • 2001  (350)
  • 1
    Publication Date: 2020-03-02
    Description: The present paper describes a multidisciplinary approach to the evaluation of a seismically triggered landslide that occurred in the Cerda area (Italy) on September 6, 2002, about 1 h after an earthquake took place in the south Tyrrhenian Sea. The study was focused on an analysis of the role of the seismic input in triggering the landslide, in view of the evidence that no other mass movement was recorded in the adjacent areas despite geological and geomorphological spatial homogeneity. The studied area is located on a slope of the western flank of the Fiume Imera Settentrionale (Northern Sicily), which is made up of clayey–arenitic rocks. The slope inclines gently but is not uniform due to fluvial, gravitative, and rainwash processes. Field data dealing with global positioning system (GPS), geology, geomorphology, geophysics (vertical electrical sounding, or VES), and geochemistry (soil gas fluxes and composition) were acquired and analysed in order to investigate the cause–effect relationships between the earthquake and the mass movement. The GPS survey allowed us to map the ground failures that have also been classified on the basis of their kinematical meaning (i.e., compressive, distensive, or transcurrent structures). The geological analysis revealed outcropping rocks and tectonic structures. The geomorphologic survey highlighted the presence of preexisting landslide bodies. The geophysical survey detected a buried surface located at a depth of about 100 m . Finally, the geochemical survey showed that the gas released from the displaced mass came from a shallow depth and was not related to any active fault system. The abovementioned information allowed us to interpret the landslide event as a partial reactivation of a preexisting landslide body that was triggered by the earthquake.
    Description: Ministero dell’Istruzione, dell’Universita` e della Ricerca (MIUR), Cofinanziamento Progetti di Ricerca di Rilevante Interesse Nazionale (COFIN PRIN) 2002 Project "Valutazione dell’Erosione del Suolo in Ambiente Mediterraneo"
    Description: Published
    Description: 101–116
    Description: partially_open
    Keywords: Landslide ; Earthquake ; Geochemistry ; Geophysics ; GPS ; Triggering mechanism ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1773148 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.
    Keywords: Geophysics
    Type: NASA/SP-2005-4538 , LC-2005001712
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.
    Keywords: Geophysics
    Type: AD-A526976 , Advances in Space Research; 27; 10; 1641-1646
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: This study is based on the geological analysis of the HRSC images taken on the orbit 0143 (12 m/px in nadir channel). The study area includes the western segment of Olympus Mons and the adjacent lowland plains (Fig. 1). Part of the volcano above the scarp is rather flat and is called "summit plateau" below. What is often called the volcano scarp is a slope classified into three morphologic types: Type 1 (S1 in Fig.1) is the steepest and dominated by ravines in its upper part and by talus beneath; Type 2 (S2) is intermediate in steepness and dominated by downslope trending linear depressions, part of which have channel-like morphology; and Type 3 (S3), is the most gentle and covered by lava flows, continuing from the summit plateau down to the lowland plains.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: Carbon dioxide is a low-concentration, but important, component of the Earth's atmosphere. This gas absorbs electromagnetic radiation (EMR) in several regions of the spectrum. Absorption of energy by carbon dioxide adds heat to the atmosphere. In the world today, the burning of fossil fuels and other anthropogenic processes adds carbon dioxide to the atmosphere. Other natural processes in the Earth's system both add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at selected sites around the globe show an increased carbon dioxide concentration in the atmosphere. A figure shows the measured carbon dioxide from Mauna Loa, Hawaii, from 1958 to 2000. Overall, the concentration has increased from 315 to 365 ppm at this site over this period. (There is also a yearly cycle to the concentration that is timed with and hypothesized to be related to the vegetation growing season in the Northern Hemisphere.) The overall expected effect of this increase of atmospheric carbon dioxide is trapping of heat in the atmosphere and global warming. While this overall relationship between carbon dioxide and global warming seems straightforward, many of the specific details relating to regional and local sources and sinks and gradients of carbon dioxide are not well understood. A remote sensing capability to measure carbon dioxide could provide important inputs for scientific research to better understand the distribution and change in atmospheric carbon dioxide at detailed spatial and temporal levels. In pursuit of this remote sensing of carbon dioxide objective, this paper analyzes the expression of carbon dioxide in the spectral range measured by the Airborne Visible/Infrared Imagery Spectrometer (AVIRIS). Based on these analyses, a spectral-fitting algorithm that uses AVIRIS measured spectra and MODTRAN radiative-transfer code modeled spectra to derive total column carbon dioxide abundance has been developed. This algorithm has been applied to an AVIRIS data set acquired over Pasadena, California, in 1999 and a data set acquired over the Pacific Ocean near Hawaii in 2000 with promising results. This is ongoing research; the current initial analyses, measurements, and results are reported in this paper.
    Keywords: Geophysics
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Second quarter progress report for year 3 on contract NASW-99002 "What is the Relationship between heavy ion outflow and high latitude energetic particle precipitation". In this Project we are studying the relationship between the fluxes, mean energies, and field-aligned flow speeds of escaping suprathermal H+ and 0+ measured by the TEAMS instrument on FAST and the energy flux of precipitating electrons obtained from the LBHL images taken by the UVI camera on POLAR. In this portion of the project we are using UVI images to tell us when substorm onsets occur and how the auroral zone changes during the course of a substorm. We are correlating this information with TEAMS flux measurements made over the auroral zone at times close to these substorms. The goal is to understand how the flux of suprathermal ion outflow varies with substorm phase.
    Keywords: Geophysics
    Type: Rept-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: We review solar geophysical data relating to the great magnetic storm of 14-15 May 1921, with emphasis on observations of the low-latitude visual aurora. From the reports we have gathered for this event the lowest geomagnetic latitude of definite overhead aurora (coronal form) was 40 deg and the lowest geomagnetic latitude from which auroras were observed on the poleward horizon in the northern hemisphere was 30 deg. For comparison, corresponding overhead/low-latitude values of 48 deg/32 deg and 41 deg/20 deg were reported for the great auroras on 28-29 August and 1-2 September 1859, respectively. However for the 1921 event, there is a report of aurora from Apia, Samoa, in the southern hemisphere, within 13 deg of the geomagnetic equator. This report by professional observers appears to be credible, based on the aurora description and timing, but is puzzling because of the discrepancy with the lowest latitude of observation in the northern hemisphere and the great implied aurora height (approximately 2000 km, assuming overhead aurora at Auckland, New Zealand). We discuss various possibilities that might account for this observation.
    Keywords: Geophysics
    Type: Journal of Atmospheric and Solar-Terrestrial Physics (ISSN 1364-6826); 63; 523-535
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: Imaging spectroscopy offers a framework based in physics and chemistry for scientific investigation of a wide range of phenomena of interest in the Earth environment. In the scientific discipline of volcanology knowledge of lava temperature and distribution at the surface provides insight into the volcano status and subsurface processes. A remote sensing strategy to measure surface lava temperatures and distribution would support volcanology research. Hot targets such as molten lava emit spectral radiance as a function of temperature. A figure shows a series of Planck functions calculated radiance spectra for hot targets at different temperatures. A maximum Lambertian solar reflected radiance spectrum is shown as well. While similar in form, each hot target spectrum has a unique spectral shape and is distinct from the solar reflected radiance spectrum. Based on this temperature-dependent signature, imaging spectroscopy provides an innovative approach for the remote-sensing-based measurement of lava temperature. A natural site for investigation of the measurement of lava temperature is the Big Island of Hawaii where molten lava from the Kilauea vent is present at the surface. In the past, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data sets have been used for the analysis of hot volcanic targets and hot burning fires. The research presented here builds upon and extends this earlier work. The year 2000 Hawaii AVIRIS data set has been analyzed to derive lava temperatures taking into account factors of fractional fill, solar reflected radiance, and atmospheric attenuation of the surface emitted radiance. The measurements, analyses, and current results for this research are presented here.
    Keywords: Geophysics
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 169-180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: We examine inorganic chlorine (Cly) partitioning in the summer lower stratosphere using in situ ER-2 aircraft observations made during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) campaign. New steady state and numerical models estimate [ClONO2]/[HCl] using currently accepted photochemistry. These models are tightly constrained by observations with OH (parameterized as a function of solar zenith angle) substituting for modeled HO2 chemistry. We find that inorganic chlorine photochemistry alone overestimates observed [ClONO2]/[HCl] by approximately 55-60% at mid and high latitudes. On the basis of POLARIS studies of the inorganic chlorine budget, [ClO]/[ClONO2], and an intercomparison with balloon observations, the most direct explanation for the model-measurement discrepancy in Cly partitioning is an error in the reactions, rate constants, and measured species concentrations linking HCl and ClO (simulated [ClO]/[HCl] too high) in combination with a possible systematic error in the ER-2 ClONO2 measurement (too low). The high precision of our simulation (+/-15% 1-sigma for [ClONO2]/[HCl], which is compared with observations) increases confidence in the observations, photolysis calculations, and laboratory rate constants. These results, along with other findings, should lead to improvements in both the accuracy and precision of stratospheric photochemical models.
    Keywords: Geophysics
    Type: Paper-2000JD900494 , Journal of Geophysical Research (ISSN 0148-0227); 106; D2; 1713-1732
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...