ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • carbon sequestration
  • ddc:551.9
  • Blackwell Publishing Ltd  (5)
  • Springer International Publishing  (4)
  • American Physical Society
Collection
Keywords
Language
  • 1
    Publication Date: 2024-05-30
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Deep‐ploughing far beyond the common depth of 30 cm was used more than 50 years ago in Northern Germany with the aim to break root‐restricting layers and thereby improve access to subsoil water and nutrient resources. We hypothesized that effects of this earlier intervention on soil properties and yields prevailed after 50 years. Hence, we sampled two sandy soils and one silty soil (Cambisols and a Luvisol) of which half of the field had been deep‐ploughed 50 years ago (soils then re‐classified as Treposols). The adjacent other half was not deep‐ploughed and thus served as the control. At all the three sites, both deep‐ploughed and control parts were then conventionally managed over the last 50 years. We assessed yields during the dry year 2019 and additionally in 2020, and rooting intensity at the year of sampling (2019), as well as changes in soil structure, carbon and nutrient stocks in that year. We found that deep‐ploughing improved yields in the dry spell of 2019 at the sandy sites, which was supported by a more general pattern of higher NDVI indices in deep‐ploughed parts for the period from 2016 to 2021 across varying weather conditions. Subsoil stocks of soil organic carbon and total plant‐available phosphorus were enhanced by 21%–199% in the different sites. Root biomass in the subsoil was reduced due to deep‐ploughing at the silty site and was increased or unaffected at the sandy sites. Overall, the effects of deep‐ploughing were site‐specific, with reduced bulk density in the buried topsoil stripes in the subsoil of the sandy sites, but with elevated subsoil density in the silty site. Hence, even 50 years after deep‐ploughing, changes in soil properties are still detectable, although effect size differed among sites.〈/p〉
    Description: BonaRes http://dx.doi.org/10.13039/501100022576
    Keywords: ddc:631.4 ; aggregates ; carbon sequestration ; deep‐ploughing ; macronutrients ; subsoil ; Treposol
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-28
    Description: We investigate the "macronutrient-access hypothesis", which states that the balance between stoichiometric macronutrient demand and accessible macronutrients controls nutrient assimilation by aquatic heterotrophs. Within this hypothesis, we consider bioavailable dissolved organic carbon (bDOC), reactive nitrogen (N) and reactive phosphorus (P) to be the macronutrients accessible to heterotrophic assimilation. Here, reactive N and P are the sums of dissolved inorganic N (nitrate-N, nitrite-N, ammonium-N), soluble-reactive P (SRP), and bioavailable dissolved organic N (bDON) and P (bDOP). Previous data from various freshwaters suggests this hypothesis, yet clear experimental support is missing. We assessed this hypothesis in a proof-of-concept experiment for waters from four small agricultural streams. We used seven different bDOC:reactive N and bDOC:reactive P ratios, induced by seven levels of alder leaf leachate addition. With these treatments and a stream-water specific bacterial inoculum, we conducted a 3-day experiment with three independent replicates per combination of stream water, treatment, and sampling occasion. Here, we extracted dissolved organic matter (DOM) fluorophores by measuring excitation-emission matrices with subsequent parallel factor decomposition (EEM-PARAFAC). We assessed the true bioavailability of DOC, DON, and the DOM fluorophores as the concentration difference between the beginning and end of each experiment. Subsequently, we calculated the bDOC and bDON concentrations based on the bioavailable EEM-PARAFAC fluorophores, and compared the calculated bDOC and bDON concentrations to their true bioavailability. Due to very low DOP concentrations, the DOP determination uncertainty was high, and we assumed DOP to be a negligible part of the reactive P. For bDOC and bDON, the true bioavailability measurements agreed with the same fractions calculated indirectly from bioavailable EEM-PARAFAC fluorophores (bDOC r〈sup〉2〈/sup〉 = 0.96, p 〈 0.001; bDON r〈sup〉2〈/sup〉 = 0.77, p 〈 0.001). Hence we could predict bDOC and bDON concentrations based on the EEM-PARAFAC fluorophores. The ratios of bDOC:reactive N (sum of bDON and DIN) and bDOC:reactive P (equal to SRP) exerted a strong, predictable stoichiometric control on reactive N and P uptake (R〈sup〉2〈/sup〉 = 0.80 and 0.83). To define zones of C:N:P (co-)limitation of heterotrophic assimilation, we used a novel ternary-plot approach combining our data with literature data on C:N:P ranges of bacterial biomass. Here, we found a zone of maximum reactive N uptake (C:N:P approx. 〉 114: 〈 9:1), reactive P uptake (C:N:P approx. 〉 170:21: 〈 1) and reactive N and P co-limitation of nutrient uptake (C:N:P approx. 〉 204:14:1). The “macronutrient-access hypothesis” links ecological stoichiometry and biogeochemistry, and may be of importance for nutrient uptake in many freshwater ecosystems. However, this experiment is only a starting point and this hypothesis needs to be corroborated by further experiments for more sites, by in-situ studies, and with different DOC sources.
    Description: Rural and Environment Science and Analytical Services Division http://dx.doi.org/10.13039/100011310
    Description: Helmholtz-Gemeinschaft http://dx.doi.org/10.13039/501100001656
    Description: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ (4215)
    Keywords: ddc:551.9 ; Ecological stoichiometry ; Dissolved organic nitrogen ; PARAFAC ; Dissolved inorganic nitrogen ; Phosphate ; Ternary plots
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-20
    Description: Coastal waters have strong gradients in dissolved organic matter (DOM) quantity and characteristics, originating from terrestrial inputs and autochthonous production. Enclosed seas with high freshwater input therefore experience high DOM concentrations and gradients from freshwater sources to more saline waters. The brackish Baltic Sea experiences such salinity gradients from east to west and from river mouths to the open sea. Furthermore, the catchment areas of the Baltic Sea are very diverse and vary from sparsely populated northern areas to densely populated southern zones. Coastal systems vary from enclosed or open bays, estuaries, fjords, archipelagos and lagoons where the residence time of DOM at these sites varies and may control the extent to which organic matter is biologically, chemically or physically modified or simply diluted with transport off-shore. Data of DOM with simultaneous measurements of dissolved organic (DO) nitrogen (N), carbon (C) and phosphorus (P) across a range of contrasting coastal systems are scarce. Here we present data from the Roskilde Fjord, Vistula and Öre estuaries and Curonian Lagoon; four coastal systems with large differences in salinity, nutrient concentrations, freshwater inflow and catchment characteristics. The C:N:P ratios of DOM of our data, despite high variability, show site specific significant differences resulting largely from differences residence time. Microbial processes seemed to have minor effects, and only in spring did uptake of DON in the Vistula and Öre estuaries take place and not at the other sites or seasons. Resuspension from sediments impacts bottom waters and the entire shallow water column in the Curonian Lagoon. Finally, our data combined with published data show that land use in the catchments seems to impact the DOC:DON and DOC:DOP ratios of the tributaries most.
    Description: Academy of Sciences of Finland
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: BONUS COCOA and Bundesministerium für Bildung und Forschung
    Description: Academy of Finland
    Description: Danish Research Council for Independent Research
    Description: BONUS COCOA Project
    Description: Leibniz-Institut für Ostseeforschung Warnemünde (IOW) (3484)
    Keywords: ddc:551.9 ; Coastal systems ; Dissolved organic matter ; Riverine input ; Baltic Sea
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-19
    Description: Tree roots penetrate the soil to several meters depth, but the role of subsoils for the supply of nutrient elements such as phosphorus (P) to the trees is poorly understood. Here, we tested the hypothesis that increased P deficiency in the topsoil results in an increased microbial recycling of P from the forest subsoil. We sampled soils from four German temperate forest sites representing a gradient in total P stocks. We analyzed the oxygen isotopic composition of HCl-extractable phosphate (δ18OP) and identified differences in P speciation with increasing soil depth using X-ray absorption near-edge structure (XANES) spectroscopy. We further determined microbial oxygen demand with and without nutrient supply at different soil depths to analyse nutrient limitation of microbial growth and used nanoscale secondary ion mass spectrometry (NanoSIMS) to visualize spatial P gradients in the rhizosphere. We found that δ18OP values in the topsoil of all sites were close to the isotopic signal imparted by biological cycling when oxygen isotopes in phosphate are exchanged by enzymatic activity. However, with increasing soil depth and increasing HCl-P concentrations, δ18Ο values continuously decreased towards values expected for primary minerals in parent material at depths below 60 cm at sites with high subsoil P stocks and below more than 2 m at sites with low subsoil P stocks, respectively. For these depths, XANES spectra also indicated the presence of apatite. NanoSIMS images showed an enrichment of P in the rhizosphere in the topsoil of a site with high P stocks, while this P enrichment was absent at a site with low P stocks and in both subsoils. Addition of C, N and P alone or in combination revealed that microbial activity in subsoils of sites with low P stocks was mostly P limited, whereas sites with high P stocks indicated N limitation or N and P co-limitation. We conclude that subsoil P resources are recycled by trees and soil microorganisms. With continued weathering of the bedrock and mobilisation of P from the weathered rocks, P cycling will proceed to greater depths, especially at sites characterised by P limitation.
    Description: Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
    Keywords: ddc:551.9 ; Oxygen isotopes ; Phosphate ; NanoSIMS ; XANES ; Microbial P cycling ; Soil
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Scholtysik, Grzegorz ; Dellwig, Olaf ; Roeser, Patricia ; [et al.]
    Springer International Publishing
    Publication Date: 2023-06-17
    Description: Significant sedimentation of manganese (Mn) in form of manganese oxides (MnOx) and the subsequent formation of authigenic calcium-rich rhodochrosite (Mn(Ca)CO3) were observed in the seasonally stratified hard water Lake Stechlin in north-eastern Germany. This manganese enrichment was assumed to be associated with recent eutrophication of the formerly oligotrophic lake. The mechanisms and processes involved were examined by analysing: (i) short sediment cores obtained from seven locations along a depth transect ranging from 69.5 m (the deepest point) to 38 m; (ii) sediment traps located at 20 m and 60 m water depths; (iii) water column profiles; and (iv) porewater profiles at 69.5 m and 58 m depths. Sedimentary Mn enrichment was observed at water depths below 56 m and increased to more than 25 wt% at the deepest site. Between 2010 and 2017, Mn accumulation at the deepest site was 815 g Mn m−2. Transfer of Mn from the shallower towards the deepest parts of the lake was initiated by reductive dissolution of MnOx and diffusion of dissolved Mn from the sediment to the overlying water column. Manganese was then dissipated via turbulent mixing and subsequently oxidised to MnOx before being transported towards the deepest zone. Transformation of the redeposited MnOx to Mn(Ca)CO3 favoured the final burial of Mn. We show that eutrophication and the areal spreading of anoxic conditions may intensify diagenetic processes and cause the spatial redistribution of Mn as well as its effective burial. Contrary to many previous findings, we show that increases of Mn and Mn/Fe can also be used as indicators for increasing anoxic conditions in previously oligotrophic lakes.
    Description: Leibniz-Gemeinschaft http://dx.doi.org/10.13039/501100001664
    Description: Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) im Forschungsverbund Berlin e.V. (3473)
    Keywords: ddc:551.9 ; Lacustrine sediments ; Geochemical focusing ; Eutrophication ; Diagenesis ; Rhodochrosite ; Varves
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-27
    Description: Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake‐groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike‐and‐Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from 〈0.2 to 〉0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.
    Description: Article impact statement: The probability of cluster membership quantified using an algorithm should be validated against another probabilistic‐based classifier.
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.9 ; ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-01
    Description: Temperate forest soils are often considered as an important sink for atmospheric carbon (C), thereby buffering anthropogenic CO2 emissions. However, the effect of tree species composition on the magnitude of this sink is unclear. We resampled a tree species common garden experiment (six sites) a decade after initial sampling to evaluate whether forest floor (FF) and topsoil organic carbon (Corg) and total nitrogen (Nt) stocks changed in dependence of tree species (Norway spruce—Picea abies L., European beech—Fagus sylvatica L., pedunculate oak—Quercus robur L., sycamore maple—Acer pseudoplatanus L., European ash—Fraxinus excelsior L. and small‐leaved lime—Tilia cordata L.). Two groups of species were identified in terms of Corg and Nt distribution: (1) Spruce with high Corg and Nt stocks in the FF developed as a mor humus layer which tended to have smaller Corg and Nt stocks and a wider Corg:Nt ratio in the mineral topsoil, and (2) the broadleaved species, of which ash and maple distinguished most clearly from spruce by very low Corg and Nt stocks in the FF developed as mull humus layer, had greater Corg and Nt stocks, and narrow Corg:Nt ratios in the mineral topsoil. Over 11 years, FF Corg and Nt stocks increased most under spruce, while small decreases in bulk mineral soil (esp. in 0–15 cm and 0–30 cm depth) Corg and Nt stocks dominated irrespective of species. Observed decadal changes were associated with site‐related and tree species‐mediated soil properties in a way that hinted towards short‐term accumulation and mineralisation dynamics of easily available organic substances. We found no indication for Corg stabilisation. However, results indicated increasing Nt stabilisation with increasing biomass of burrowing earthworms, which were highest under ash, lime and maple and lowest under spruce. Highlights We studied if tree species differences in topsoil Corg and Nt stocks substantiate after a decade. The study is unique in its repeated soil sampling in a multisite common garden experiment. Forest floors increased under spruce, but topsoil stocks decreased irrespective of species. Changes were of short‐term nature. Nitrogen was most stable under arbuscular mycorrhizal species.
    Description: Deutsche Forschungsgemeinschaff (DFG)
    Keywords: ddc:551.9 ; ddc:631.41
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-16
    Description: The application of biochar to agricultural soils to increase nutrient availability, crop production and carbon sequestration has gained increasing interest but data from field experiments on temperate, marginal soils are still under‐represented. In the current study, biochar, produced from organic residues (digestates) from a biogas plant, was applied with and without digestates at low (3.4 t ha−1) and intermediate (17.1 t ha−1) rates to two acidic and sandy soils in northern Germany that are used for corn (Zea mays L.) production. Soil nutrient availability, crop yields, microbial biomass and carbon dioxide (CO2) emissions from heterotrophic respiration were measured over two consecutive years. The effects of biochar application depended on the intrinsic properties of the two tested soils and the biochar application rates. Although the soils at the fallow site, with initially low nutrient concentrations, showed a significant increase in pH, soil nutrients and crop yield after low biochar application rates, a similar response was found at the cornfield site only after application of substantially larger amounts of biochar. The effect of a single dose of biochar at the beginning of the experiment diminished over time but was still detectable after 2 years. Whereas plant available nutrient concentrations increased after biochar application, the availability of potentially phytotoxic trace elements (Zn, Pb, Cd, Cr) decreased significantly, and although slight increases in microbial biomass carbon and heterotrophic CO2 fluxes were observed after biochar application, they were mostly not significant. The results indicate that the application of relatively small amounts of biochar could have positive effects on plant available nutrients and crop yields of marginal arable soils and may decrease the need for mineral fertilizers while simultaneously increasing the sequestration of soil organic carbon. Highlights A low rate of biochar increased plant available nutrients and crop yield on marginal soils. Biochar application reduced the availability of potentially harmful trace elements. Heterotrophic respiration showed no clear response to biochar application. Biochar application may reduce fertilizer need and increase carbon sequestration on marginal soils.
    Description: German Academic Exchange Service http://dx.doi.org/10.13039/501100001655
    Description: Institute Strategic Programme grants, “Soils to Nutrition”
    Keywords: 631.4 ; black carbon ; carbon sequestration ; corn ; digestate ; heterotrophic respiration ; marginal soils ; microbial biomass
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C mˉ2 yrˉ1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol mˉ2 sˉ1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of -2.3 μmol mˉ2 sˉ1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day-time NECB just below 1000 μmol mˉ2 sˉ1. The analyses of the diurnal and seasonal data and preliminary geological and gas-geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2-rich geofluid circulation.
    Description: Published
    Description: 539–554
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: alpha grass ; carbon sequestration ; ecosystem respiration ; eddy covariance ; geogas ; geothermal activity ; grasslands ; net ecosystem carbon balance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...