ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (4,059)
  • Other Sources  (46,028)
  • 2010-2014  (50,087)
Collection
Language
Years
Year
Branch Library
  • 1
    facet.materialart.12
    Cambridge : Cambridge University Press
    Call number: 9781107306189 (e-book)
    Description / Table of Contents: "The Earth is a dynamic system. Internal processes, together with external gravitational forces of the Sun, Moon and planets, displace the Earth's mass, impacting on its shape, rotation and gravitational field. Doug Smylie provides a rigorous overview of the dynamical behaviour of the solid Earth, explaining the theory and presenting methods for numerical implementation. Topics include advanced digital analysis, earthquake displacement fields, Free Core Nutations observed by the Very Long Baseline Interferometric technique, translational modes of the solid inner core observed by the superconducting gravimeters, and dynamics of the outer fluid core. This book is supported by freeware computer code, available online for students to implement the theory. Online materials also include a suite of graphics generated from the numerical analysis, combined with 100 graphic examples in the book to make this an ideal tool for researchers and graduate students in the fields of geodesy, seismology and solid earth geophysics"--
    Type of Medium: 12
    Pages: 1 Online-Ressource (XII, 543 Seiten) , Illustrationen
    Edition: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    ISBN: 9781107306189
    Language: English
    Note: Contents Preface and acknowledgments The book website www.cambridge.org/smylie 1 Introduction and theoretical background 1.1 Scalar, vector and tensor analysis 1.2 Separation of vector fields 1.3 Vector spherical harmonics 1.4 Elasticity theory 1.5 Linear algebraic systems 1.6 Interpolation and approximation 2 Time sequence and spectral analysis 2.1 Time domain analysis 2.2 Linear optimum Wiener filters 2.3 Frequency domain analysis 2.4 Fourier series and transforms 2.5 Power spectral density estimation 2.6 Maximum entropy spectral analysis 3 Earth deformations 3.1 Equilibrium equations 3.2 The reciprocal theorem of Betti 3.3 Radial equations: spheroidal and torsional 3.4 Dynamical equations 3.5 Solutions near the geocentre 3.6 Numerical integration of the radial equations 3.7 Fundamental, regular solutions in the inner core 4 Earth's rotation: observations and theory 4.1 Reference frames 4.2 Polar motion and wobble 4.3 The dynamics of polar motion and wobble 4.4 Nutation and motion of the celestial pole 5 Earth's figure and gravitation 5.1 Historical development 5.2 External gravity and figure 5.3 Equilibrium theory of the internal figure 5.4 Gravity coupling 6 Rotating fluids and the outer core 6.1 The inertial wave equation 6.2 Dynamics of the fluid outer core 6.3 Scaling of the core equations 6.4 Compressibility and density stratification 7 The subseisniic equation and boundary conditions 7.1 The subseismic wave equation 7.2 Deformation of the shell and inner core 8 Variational methods and core modes 8.1 A subseismic variational principle 8.2 Representation of the functional 8.3 Finite element support functions 8.4 Boundary conditions and constraints 8.5 Numerical implementation and results 8.6 Rotational splitting and viscosity 8.7 A viscosity profile for the outer core 9 Static deformations and dislocation theory 9.1 The elasticity theory of dislocations 9.2 The theory for realistic Earth models 9.3 Changes in the inertia tensor and the secular polar shift Appendix A Elementary results from vector analysis A.1 Vector identities A.2 Vector calculus identities A.3 Integral theorems Appendix B Properties of Legendre functions B.1 Recurrence relations B.2 Evaluation of Legendre functions Appendix C Numerical Earth models C.1 The Earth models References Fortran index Subject index
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-07
    Description: We present a detailed field and petrological study of charnockites and ultra-high temperature (UHT) granulites from the Gruf Complex, eastern Central Alps. Charnockites occur as up to 0.5 km wide and 8 km long, internally boudinaged, opx-bearing sheet-like bodies within the regionally dominant migmatitic biotite-orthogneisses. Granulites occur as garnet–orthopyroxene–biotite–alkali feldspar-bearing schlieren (± sapphirine, sillimanite, cordierite, corundum, spinel, plagioclase, and quartz) within charnockites and as residual enclaves both in the charnockites and the migmatitic orthogneisses. Thermobarometric calculations, P–T pseudosections and orthopyroxene Al content, show that both charnockites and granulites equilibrated at metamorphic peak conditions of T = 920–940 °C and P = 8.5–9.5 kbar. Peak assemblages were subsequently overprinted by intergrowth, symplectite and corona textures involving orthopyroxene, sapphirine, cordierite and spinel at T = 720–740 °C and P = 7–7.5 kbar. We suggest that granulites and charnockites are lower crustal relicts preserved in the migmatitic orthogneisses. Garnet diffusion modelling shows that metamorphic garnet–opx ± sapphirine ± sillimanite peak assemblages and post-peak reaction textures always involving cordierite developed during two separate metamorphic cycles. Peak assemblages reflect UHT metamorphism related to post-Varican Permian extension, but post-peak coronae and symplectites formed during the mid-Tertiary, upper amphibolite facies, Alpine regional metamorphism. Fluid-absent partial melting of pelitic and psammitic sediments during the Permian UHT event lead to the formation of charnockitic magmas and granulitic residues. Intense melt loss and thorough dehydration of the granulites (although retaining biotite) favoured the partial preservation of peak mineral assemblages during Alpine metamorphism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-06
    Description: This paper describes a Bayesian inversion of acoustic reflection loss versus angle measurements to estimate the compressional and shear wave velocities in young uppermost oceanic crust, Layer 2A. The data were obtained in an experiment on the thinly sedimented western flank of the Endeavor segment of the Juan de Fuca Ridge, using a towed horizontal hydrophone array and small explosive charges as sound sources. Measurements were made at three sites at increasing distance from the ridge spreading center to determine the effect of age of the crust on seismic velocities. The inversion used reflection loss data in a 1/3-octave band centered at 16 Hz. The compressional and shear wave velocities of the basalt were highly sensitive parameters in the inversion. The compressional wave velocity increased from 2547±30 to 2710±18 m/s over an age span of 1.4 million years (Ma) from the spreading center, an increase of 4.5±1.0%/Ma. The basalt shear wave velocity increased by nearly a factor of 2, from ∼725 to 1320 m/s over the same age span. These results show a decreasing trend of Poisson’s ratio with age, from a value of 0.46 at the youngest site closest to the ridge axis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-13
    Keywords: Course of study: MSc Biological Oceanography
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-13
    Description: Wissenschaftliche Untersuchungen haben gezeigt, dass einige invasive Arten bzw. Populationen gegenüber Umweltstress robuster sind als nicht invasive Arten bzw. Populationen derselben Art. Es wird vermutet, dass die Toleranz gegenüber abiotischen Stressoren wahrscheinlich eine Schlüsseleigenschaft von invasiven Arten darstellt. Während des Transports von Individuen in einen neuen Lebensraum oder durch Stressereignisse könnten widrige abiotische Bedingungen eine Selektion stresstoleranter Individuen hervorrufen, was die erhöhte Stresstoleranz von invasiven Arten bzw. Populationen erklären könnte. Um dies zu testen, habe ich in einem Laborexperiment ein Transport- bzw. Stressereignis simuliert. In zwei unabhängigen Experimenten habe ich in einer Gruppe von Individuen der Weißbeingarnele Penaeus vannamei durch erhöhte Temperaturen mindestens 50 % Mortalität erzeugt. Hierbei wurden die Individuen in unabhängigen Replikaten für 13 Tage 37°C (Langzeit-Stressexperiment) bzw. für 2 h 41°C (Kurzzeit-Stressexperiment) Wassertemperatur ausgesetzt. Nach dieser ersten Stressphase wurde ein Teil der überlebenden gleichzeitig mit einer gleichen Anzahl an bis dahin nicht vorgestressten Individuen sofort wieder denselben erhöhten Temperaturen ausgesetzt und die Überlebenskurven in beiden Gruppen verglichen. Den übrigen überlebenden der ersten Stressphase wurde vor der zweiten Stressphase eine 13 Tage (Langzeit-Stressexperiment) bzw. 6 Tage (Kurzzeit-Stressexperiment) lange Erholungsphase gewährt, damit etwaige physiologische Anpassungen an Stressbedingungen abklingen konnten. Der Vergleich der Überlebenskurven einer vorgestressten Gruppe, die nach der ersten Stressphase direkt wieder Stressbedingungen ausgesetzt wurde und einer vorgestressten Gruppe, der eine Erholungsphase gewährt wurde, sollte Aufschluss darüber geben, ob eine mögliche erhöhte Stresstoleranz der vorgestressten Gruppen auf eine Selektion stresstoleranter Individuen oder physiologischer Anpassungen an Stressbedingungen zurückzuführen war. In beiden Experimenten zeigten die vorgestressten Gruppen, unabhängig davon, ob ihnen eine Erholungsphase gewährt wurde oder nicht, stets höhere Überlebensraten als die Gruppen, die nicht vorgestresst waren. Meine Ergebnisse legen einerseits nahe, dass es durch Temperaturstress zu einer physiologischen Stressabhärtung und dadurch zu erhöhten Überlebensraten der vorgestressten Individuen kam. Da Literaturdaten darauf hinweisen, dass die Erholungsphasen wahrscheinlich lang genug waren, um die physiologische Stressabhärtung in den vorgestressten Gruppen, denen eine Erholungsphase gewährt wurden, abklingen zu lassen, kann man andererseits annehmen, dass es durch den Temperaturstress bei P. vannamei zu einer Selektion stresstoleranterer Individuen gekommen ist. Dies konnte im Rahmen meiner Diplomarbeit jedoch nicht direkt bewiesen werden.
    Type: Thesis , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung
    Publication Date: 2024-05-13
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-13
    Type: Thesis , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-22
    Description: During the last decades, the Chilean margin offshore Maule (34±S −36±S) had been reported as a highly locked and seismically quiet zone. The stress-accumulated state finished on the 27th of February 2010, when a megathrust earthquake (with Mw = 8.8) ruptured » 400 km of the Nazca-South America plate boundary. Unfortunately, up to now little was known about the seismic structure offshore Maule. In the frame of the third phase of the project SFB 574 “Volatiles and Fluids in Subduction Zones” of the Christan-Albrechts University of Kiel, seismic data was analyzed in order to obtain detailed images of the deep structure of the margin and of the outer rise. Here are presented constraints on the forearc and the subduction zone structure of the rupture area derived from seismic refraction and wide-angle data. The results show a wedge shaped body » 40 km wide with typical sedimentary velocities interpreted as a frontal accretionary prism (FAP). Landward of the imaged FAP, the velocity model shows an abrupt velocity-contrast suggesting a lithological change, which is interpreted as the contact between the FAP and the paleo accretionary prism (backstop). The backstop location is coincident with the seaward limit of the aftershocks, defining the updip limit of the co-seismic rupture and the seismogenic zone. Furthermore, the seaward limit of the aftershocks coincides with the location of the shelf break in the entire earthquake rupture area (33.5±S−38.5±S), which is interpreted as the location of the backstop along the margin. Published seismic profiles at the northern and southern limit of the rupture area also show the presence of a strong horizontal velocity gradient imaging the seismic backstop at a distance of » 30 km from the deformation front. The seismic wide-angle reflections from the top of the subducting oceanic crust constrain the location of the plate boundary offshore, dipping » 10±. The projection of the epicenter of the Maule earthquake onto our derived interplate boundary yielded a hypocenter around 20 km depth. This implies that the earthquake nucleated somewhere within the seismogenic zone, neither at its updip nor at its downdip limit. The second part of this thesis focuses on the dependency between the incoming plate’s bend faulting, lithospheric hydration and shallow outer rise seismic activity. To support the interpretation, are presented Vp and Vs seismic models obtained from wide angle seismic data and the derived 2D Poisson’s ratio distribution at the outer rise. The oceanic lithosphere shows a high degree of hydration, due to the water infiltration through the bending-related faults exposed to seawater. This process is presumably intensified bythe existence of a seamount in the area. It is concluded that the water infiltrates deep into the lithosphere, triggering shallow earthquakes in the outer rise and likely serpentinization in the mantle, estimated to be about 10%.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-17
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.12
    Chichester, [England] : Wiley
    Call number: 9781444328479 (e-book)
    Type of Medium: 12
    Pages: 1 Online-Ressource (XIII, 768 Seiten) , Illustrationen
    Edition: Second edition
    ISBN: 9781444328479 (e-book) , 978-1-4443-2847-9
    Language: English
    Note: Contents Contents Preface Acknowledgements Part 1: Making Sediment Introduction Clastic sediment as a chemical and physical breakdown product 1.1 Introduction: clastic sediments—'accidents' of weathering 1.2 Silicate minerals and chemical weathering 1.3 Solute flux: rates and mechanisms of silicate chemical weathering 1.4 Physical weathering 1.5 Soils as valves and filters for the natural landscape 1.6 Links between soil age, chemical weathering and weathered-rock removal 1.7 Provenance: siliciclastic sediment-sourcing Further reading 2 Carbonate, siliceous, iron-rich and evaporite sediments 2.1 Marine vs. freshwater chemical composition and fluxes 2.2 The calcium carbonate system in the oceans 2.3 Ooid carbonate grains 2.4 Carbonate grains from marine plants and animals 2.5 Carbonate muds, oozes and chalks 2.6 Other carbonate grains of biological origins 2.7 Organic productivity, sea-level and atmospheric controls of biogenic CaCO3 deposition rates 2.8 CaCO3 dissolution in the deep ocean and the oceanic CaCO3 compensation mechanism 2.9 The carbonate system on land 2.10 Evaporite salts and their inorganic precipitation as sediment 2.11 Silica and pelagic plankton 2.12 Iron minerals and biomineralizers 2.13 Desert varnish 2.14 Phosphates 2.15 Primary microbial-induced sediments: algal mats and stromatolites Further reading 3 Sediment grain properties 3.1 General 3.2 Grain size 3.3 Grain-size distributions 3.4 Grain shape and form 3.5 Bulk properties of grain aggregates Further reading Part 2: Moving Fluid Introduction 4 Fluid basics 4.1 Material properties of fluids 4.2 Fluid kinematics 4.3 Fluid continuity with constant density 4.4 Fluid dynamics 4.5 Energy, mechanical work and power Further reading 5 Types of fluid motion 5.1 Osborne Reynolds and flow types 5.2 The distribution of velocity in viscous flows: the boundary layer 5.3 Turbulent flows 5.4 The structure of turbulent shear flows 5.5 Shear flow instabilities, flow separation and secondary currents 5.6 Subcritical and supercritical flows: the Froude number and hydraulic jumps 5.7 Stratified flow generally 5.8 Water waves 5.9 Tidal flow—long-period waves Further reading Part 3: Transporting Sediment Introduction 6 Sediment in fluid and fluid flow—general 6.1 Fall of grains through stationary fluids 6.2 Natural flows carrying particulate material are complex 6.3 Fluids as transporting machines 6.4 Initiation of grain motion 6.5 Paths of grain motion 6.6 Categories of transported sediment 6.7 Some contrasts between wind and water flows 6.8 Cohesive sediment transport and erosion 6.9 A warning: nonequilibrium effects dominate natural sediment transport systems 6.10 Steady state, deposition or erosion: the sediment continuity equation and competence vs. capacity Further reading 7 Bedforms and sedimentary structures in flows and under waves 7.1 Trinity of interaction: turbulent flow, sediment transport and bedform development 7.2 Water-flow bedforms 7.3 Bedform phase diagrams for water flows 7.4 Water flow erosional bedforms on cohesive beds 7.5 Water wave bedforms 7.6 Combined flows: wave-current ripples and hummocky cross-stratification 7.7 Bedforms and structures formed by atmospheric flows Further reading 8 Sediment gravity flows and their deposits 8.1 Introduction 8.2 Granular flows 8.3 Debris flows 8.4 Turbidity flows 8.5 Turbidite evidence for downslope transformation from turbidity to debris flows Further reading 9 Liquefaction, fluidization and sliding sediment deformation 9.1 Liquefaction 9.2 Sedimentary structures formed by and during liquefaction 9.3 Submarine landslides, growth faults and slumps 9.4 Desiccation and synaeresis shrinkage structures Further reading Part 4: Major External Controls on Sedimentation and Sedimentary Environments Introduction 10 Major external controls on sedimentation 10.1 Climate 10.2 Global climates: a summary 10.3 Sea-level changes 10.4 Tectonics 10.5 Sediment yield, denudation rate and the sedimentary record Further reading Part 5: Continental Sedimentary Environments Introduction 11 Rivers 11.1 Introduction 11.2 River networks, hydrographs,patterns and long profiles 11.3 Channel form 11.4 Channel sediment transport processes, bedforms and internal structures 11.5 The floodplain 11.6 Channel belts, alluvial ridges and avulsion 11.7 River channel changes, adjustable variables and equilibrium 11.8 Alluvial architecture: product of complex responses 11.9 Alluvial architecture: scale, controls and time Further reading 12 Subaerial Fans: Alluvial and Colluvial 12.1 Introduction 12.2 Controls on the size (area) and gradient of fans 12.3 Physical processes on alluvial fans 12.4 Debris-flow-dominated alluvial fans 12.5 Stream-flow-dominated alluvial fans 12.6 Recognition of ancient alluvial fans and talus cones Further reading 13 Aeolian Sediments in Low-Latitude Deserts 13.1 Introduction 13.2 Aeolian system state 13.3 Physical processes and erg formation 13.4 Erg margins and interbedform areas 13.5 Erg and draa evolution and sedimentary architecture 13.6 Erg construction, stasis and destruction: climate and sea-level controls 13.7 Ancient desert facies Further reading 14 Lakes 14.1 Introduction 14.2 Lake stratification 14.3 Clastic input by rivers and the effect of turbidity currents 14.4 Wind-forced physical processes 14.5 Temperate lake chemical processes and cycles 14.6 Saline lake chemical processes and cycles 14.7 Biological processes and cycles 14.8 Modern temperate lakes and their sedimentary facies 14.9 Lakes in the East African rifts 14.10 Lake Baikal 14.11 The succession of facies as lakes evolve 14.12 Ancient lake facies Further reading 15 Ice 15.1 Introduction 15.2 Physical processes of ice flow 15.3 Glacier flow, basal lubrication and surges 15.4 Sediment transport, erosion and deposition by flowing ice 15.5 Glacigenic sediment: nomenclature and classification 15.6 Quaternary and modern glacial environments and facies 15.7 Ice-produced glacigenic erosion and depositional facies on land and in the periglacial realm 15.8 Glaciofluvial processes on land at and within the ice-front 15.9 Glacimarine environments 15.10 Glacilacustrine environments 15.11 Glacial facies in the pre-Quaternary geological record: case of Cenozoic Antarctica Further reading Part 6: Marine Sedimentary Environments Introduction 16. Estuaries 16.1 Introduction 16.2 Estuarine dynamics 16.3 Modern estuarine morphology and sedimentary environments 16.4 Estuaries and sequence stratigraphy Further reading 17. River and Fan Deltas 17.1 Introduction to river deltas 17.2 Basic physical processes and sedimentation at the river delta front 17.3 Mass movements and slope failure on the subaqueous delta 17.4 Organic deposition in river deltas 17.5 River delta case histories 17.6 River deltas and sea-level change 17.7 Ancient river delta deposits 17.8 Fan deltas Further reading 18. Linear Siliciclastic Shorelines 18.1 Introduction 18.2 Beach processes and sedimentation 18.3 Barrier-inlet-spit systems and their deposits 18.4 Tidal flats, salt marsh and chenier ridges 18.5 Ancient clastic shoreline facies Further reading 19 Siliciclastic Shelves 19.1 Introduction: shelf sinks and lowstand bypass 19.2 Shelf water dynamics 19.3 Holocene highstand shelf sediments: general 19.4 Tide-dominated, low river input, highstand shelves 19.5 Tide-dominated, high river input, highstand shelves 19.6 Weather-dominated highstand shelves Further reading 20 Calcium-carbonate-evaporite Shorelines, Shelves and Basins 20.1 Introduction: calcium carbonate 'nurseries' and their consequences 20.2 Arid carbonate tidal flats, lagoons and evaporite sabkhas 20.3 Humid carbonate tidal flats and marshes 20.4 Lagoons and bays 20.5 Tidal delta and margin-spillover carbonate tidal sands 20.6 Open-shelf carbonate ramps 20.7 Platform margin reefs and carbonate build-ups 20.8 Platform margin slopes and basins 20.9 Carbonate sediments, cycles and sea-level change 20.10 Displacement and destruction of carbonate environments: silicicl
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...