ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (5)
  • American Institute of Physics
  • American Physical Society
  • Blackwell Publishing Ltd
  • 2015-2019  (4)
  • 2000-2004  (1)
Sammlung
Datenquelle
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    American Institute of Physics
    In:  Review of Scientific Instruments, 90 (12). p. 124504.
    Publikationsdatum: 2021-01-08
    Beschreibung: Understanding mechanical interactions between hydrate and hosting sediments is critical for evaluating formation stability and associated environmental impacts of hydrate-bearing sediments during gas production. While core-scale studies of hydrate-bearing sediments are readily available and some explanations of observed results rely on pore-scale behavior of hydrate, actual pore-scale observations supporting the larger-scale phenomena are rarely available for hydrate-bearing sediments, especially with methane as guest molecules. The primary reasons for the scarcity include the challenge of developing tools for small-scale testing apparatus and pore-scale visualization capability. We present a testing assembly that combines pore-scale visualization and triaxial test capability of methane hydrate-bearing sediments. This testing assembly allows temperature regulation and independent control of four pressures: influent and effluent pore pressure, confining pressure, and axial pressure. Axial and lateral effective stresses can be applied independently to a 9.5 mm diameter and 19 mm long specimen while the pore pressure and temperature are controlled to maintain the stability of methane hydrate. The testing assembly also includes an X-ray transparent beryllium core holder so that 3D computed tomography scanning can be conducted during the triaxial loading. This testing assembly permits pore-scale exploration of hydrate-sediment interaction in addition to the traditional stress-strain relationship. Exemplary outcomes are presented to demonstrate applications of the testing assembly on geomechanical property estimations of methane-hydrate bearing sediments.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    American Institute of Physics
    In:  Journal of the Acoustical Society of America, 140 (4). pp. 2695-2702.
    Publikationsdatum: 2020-07-16
    Beschreibung: The Green's function (GF) for the scalar wave equation is numerically constructed by an advanced geometric ray-tracing method based on the eikonal approximation related to the semiclassical propagator. The underlying theory is first briefly introduced, and then it is applied to acoustics and implemented in a ray-tracing-type numerical simulation. The so constructed numerical method is systematically used to calculate the sound field in a rectangular (cuboid) room, yielding also the acoustic modes of the room. The simulated GF is rigorously compared to its analytic approximation. Good agreement is found, which proves the devised numerical approach potentially useful also for low frequency acoustic modeling, which is in practice not covered by geometrical methods.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    American Institute of Physics
    In:  The Journal of the Acoustical Society of America, 138 (3). pp. 1253-1267.
    Publikationsdatum: 2020-05-11
    Beschreibung: Responses obtained in consonant perception experiments typically show a large variability across stimuli of the same phonetic identity. The present study investigated the influence of different potential sources of this response variability. It was distinguished between source-induced variability, referring to perceptual differences caused by acoustical differences in the speech tokens and/or the masking noise tokens, and receiver-related variability, referring to perceptual differences caused by within- and across-listener uncertainty. Consonant-vowel combinations consisting of 15 consonants followed by the vowel /i/ were spoken by two talkers and presented to eight normal-hearing listeners both in quiet and in white noise at six different signal-to-noise ratios. The obtained responses were analyzed with respect to the different sources of variability using a measure of the perceptual distance between responses. The speech-induced variability across and within talkers and the across-listener variability were substantial and of similar magnitude. The noise-induced variability, obtained with time-shifted realizations of the same random process, was smaller but significantly larger than the amount of within-listener variability, which represented the smallest effect. The results have implications for the design of consonant perception experiments and provide constraints for future models of consonant perception.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    American Institute of Physics
    In:  The Leading Edge, 37 (11). pp. 818-828.
    Publikationsdatum: 2019-01-02
    Beschreibung: High-resolution 3D (HR3D) seismic data are important for hydrocarbon exploration of shallow reservoirs, site characterization, and geohazard assessments. The goal of this contribution is to identify and quantify the parameters to increase the resolution of HR3D seismic data to meter scale. The main acquisition parameters controlling the resolution of the collected data are the spectrum of the seismic source, source-receiver offset range, and trace density. An evolution to one-meter-scale resolution of 3D seismic will rely on combining a reproducible seismic source with high frequencies up to at least 600 Hz, a high uniform trace density of more than 4 million traces per square kilometer, and an offset range shorter than approximately 200 m. The resulting 3D seismic data volume will reach meter-scale resolution for water and target depths of less than 600 m. The proposed HR3D system will be suitable for 3D and 4D characterization of seabed properties and shallow stratigraphy, the identification of geohazards and hydrocarbon leakage, and monitoring the environmental impact of offshore activities. The P-Cable 3D system is an excellent starting point for achieving one-meter-scale resolution due to its flexible and tight meter-scale shot and receiver spacing.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    American Institute of Physics
    In:  The Leading Edge, 21 (7). pp. 686-689.
    Publikationsdatum: 2016-07-13
    Beschreibung: As offshore petroleum exploration and development move into deeper water, industry must contend increasingly with gas hydrate, a solid compound that binds water and a low-molecular-weight gas (usually methane). Gas hydrate has been long studied in industry from an engineering viewpoint, due to its tendency to clog gas pipelines. However, hydrate also occurs naturally wherever there are high pressures, low temperatures, and sufficient concentrations of gas and water. These conditions prevail in two natural environments, both of which are sites of active exploration: permafrost regions and marine sediments on continental slopes. In this article we discuss seismic detection of gas hydrate in marine sediments. Gas hydrate in deepwater sediments poses both new opportunities and new hazards. An enormous quantity of natural gas, likely far exceeding the global inventory of conventional fossil fuels, is locked up worldwide in hydrates. Ex-traction of this unconventional resource presents unique exploration, engineering, and economic challenges, and several countries, including the United States, Japan, Canada, India, and Korea, have initiated joint industry-academic-governmental programs to begin studying those challenges. Hydrates also constitute a potential drilling hazard. Because hydrates are only stable in a restricted range of pressure and temperature, any activity that sufficiently raises temperature or lowers pressure could destabilize them, releasing potentially large volumes of gas and decreasing the shear strength of the host sediments. Assessment of the opportunities and hazards associated with hydrates requires reliable methods of detecting hydrate and accurate maps of their distribution and concentration. Hydrate may occur only within the upper few hundred meters of deepwater sediment, at any depth between the seafloor and the base of the stability zone, which is controlled by local pressure and temperature. Hydrate is occasionally exposed at the seafloor, where it can be detected either visually or acoustically by strong seismic reflection amplitudes or high backscatter …
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...