ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Bücher
  • Weitere Quellen  (140)
  • Spacecraft Propulsion and Power  (140)
  • 2010-2014  (140)
  • 2010  (140)
  • 1
    Publikationsdatum: 2019-08-24
    Beschreibung: Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations. This paper summarizes the analyses of combustion and performance as a follow-up to a paper published in the 2008 JANNAF/LPS meeting. Combustion stability analyses are presented in a separate paper. The current paper includes test and analysis results of coaxial element injectors using liquid oxygen and liquid methane or gaseous methane propellants. Several thrust chamber configurations have been modeled, including thrust chambers with multi-element swirl coax element injectors tested at the NASA MSFC, and a uni-element chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0077 , 57th JANNAF Propulsion Meeting (JPM); May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|Joint Meeting of the 7th Modeling and Simulation Subcommittee (MSS); May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|Spacecraft Propulsion Subcommittee (SPS) Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|5th Liquid Propulsion Subcommittee (LPS) Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-08-13
    Beschreibung: This CD contains the slide presentation and a brief video of the solar sail concept. Solar Sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. The goal of the FeatherSail project is to create a sail vehicle with the ability to provide steering from the sails and increase the areal density.
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0510 , JANNAF 2010 Spacecraft Propulsion Subcommittee; May 03, 2010 - May 07, 2010; Colorado Springs,CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-08-13
    Beschreibung: NASA is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, two phases of testing have been completed on the development of the gas generator for the J-2X engine. The hardware has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in combustion instability of the gas generator assembly. Development of the final configuration of workhorse hardware (which will ultimately be used to verify critical requirements on a component level) has required a balance between changes in the injector and chamber hardware in order to successfully mitigate the combustion instability without sacrificing other engine system requirements. This paper provides an overview of the two completed test series, performed at NASA s Marshall Space Flight Center. The requirements, facility setup, hardware configurations, and test series progression are detailed. Significant levels of analysis have been performed in order to provide design solutions to mitigate the combustion stability issues, and these are briefly covered. Also discussed are the results of analyses related to either anomalous readings or off-nominal testing throughout the two test series.
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0182 , 4th Spacecraft Propulsion Subcommittee; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|57th JANNAF Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|5th Liquid Propulsion Subcommittee; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|7th Modeling and Simulation Subcommittee; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-08-13
    Beschreibung: A Japanese-led international team is developing a suborbital test of orbital-motion-limited (OML) bare wire anode current collection for application to electrodynamic tether (EDT) propulsion. The tether is a tape with a width of 25 mm, thickness of 0.05 mm, and is 300 m in length. This will be the first space test of OML theory. The mission will launch in the summer of 2010 using an S520 Sounding Rocket. During ascent, and above approximately 100 km in attitude, the tape tether will be deployed at a rate of approximately8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow. The total amount of current collected will be used to assess the validity of OML theory. This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using EDTs for propulsion or power generation
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0514 , M10-0592 , 57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 10, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-13
    Beschreibung: Since the first documented design of a space station in 1929, it has been a dream of many to sustain a permanent presence in space. Russia and the US spent several decades competing for a sustained human presence in low Earth orbit. In the 1980 s, Russia and the US began to openly collaborate to achieve this goal. This collaboration lead to the current design of the ISS. Continuous improvement of procedures for controlling the ISS have lead to more efficient propellant management over the years. Improved efficiency combined with the steady use of cargo vehicles has kept ISS propellant levels well above their defined thresholds in all categories. The continuing evolution of propellant and momentum management operational strategies demonstrates the capability and flexibility of the ISS propulsion system. The hard work and cooperation of the international partners and the evolving operational strategies have made the ISS safe and successful. The ISS s proven success is the foundation for the future of international cooperation for sustaining life in space.
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: JSC-CN-20481 , 57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-08-13
    Beschreibung: Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0561 , M10-0591 , 5th Liquid Propulsion Meeting; May 03, 2010 - May 06, 2010; Colorado Springs, CO; United States|57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 06, 2010; Colorado Springs, CO; United States|4th Spacecraft Propulsion Joint Subcommittee Meeting; May 03, 2010 - May 06, 2010; Colorado Springs, CO; United States|7th Modeling and Simulation Meeting; May 03, 2010 - May 06, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: Pogo occurs when the natural frequency of a propellant feed line comes close to a readily excited rocket longitudinal structural vibration natural frequency. Maximum Pogo response corresponds to close tuning of the structural and hydraulic frequencies. On Saturn V, accelerations up to 17 g's (Zero To Peak) at the Launch Vehicle/Payload Interface and up to 34 g's at an Engine have been observed. Nicknamed Pogo because it causes the Rocket to stretch and compress like a Pogo stick. First recognized with the Titan II in 1962, Pogo remains a prime consideration in design of launch vehicles today
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0646 , 7th Modeling and Simulation; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|5th Liquid Propulsion; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|4th Spacecraft Propulsion Joint Subcommittee Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: The difference between the AS-510 observed and predicted separation distance is attributed to a greater F-1 engine "tail off" impulse than that used in the separation distance prediction. . The F-1 thrust decay was normal and not appreciably different from previous (AS-505 through 509) flights. . Analysis indicates that with an S-IC stage having only four retro motors, failure of one retro motor to ignite would result in marginal separation distances and, in the 3-sigma case, re-contact of the two stages. . S-IC-11 and subsequent flight stages were equipped with eight retro motors rather than the planned four.
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0609 , 4th Spacecraft Propulsion Joint Subcommittee Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|5th Liquid Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|7th Modeling and Simulation Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: The J-2X Upper Stage Engine (USE) will be the first new human-rated upper stage engine since the Apollo program of the 1960s. It is designed to carry the Ares I and Ares V into orbit and send the Ares V to the Moon as part of NASA's Constellation Program. This paper will provide an overview of progress on the design, testing, and manufacturing of this new engine in 2009 and 2010. The J-2X embodies the program goals of basing the design on proven technology and experience and seeking commonality between the Ares vehicles as a way to minimize risk, shorten development times, and live within current budget constraints. It is based on the proven J-2 engine used on the Saturn IB and Saturn V launch vehicles. The prime contractor for the J-2X is Pratt & Whitney Rocketdyne (PWR), which is under a design, development, test, and engineering (DDT&E) contract covering the period from June 2006 through September 2014. For Ares I, the J-2X will provide engine start at approximately 190,000 feet, operate roughly 500 seconds, and shut down. For Ares V, the J-2X will start at roughly 190,000 feet to place the Earth departure stage (EDS) in orbit, shut down and loiter for up to five days, re-start on command and operate for roughly 300 seconds at its secondary power level to perform trans lunar injection (TLI), followed by final engine shutdown. The J-2X development effort focuses on four key areas: early risk mitigation, design risk mitigation, component and subassembly testing, and engine system testing. Following that plan, the J-2X successfully completed its critical design review (CDR) in 2008, and it has made significant progress in 2009 and 2010 in moving from the drawing board to the machine shop and test stand. Post-CDR manufacturing is well under way, including PWR in-house and vendor hardware. In addition, a wide range of component and sub-component tests have been completed, and more component tests are planned. Testing includes heritage powerpack, turbopump inducer water flow, turbine air flow, turbopump seal testing, main injector and gas generator, injector testing, augmented spark igniter testing, nozzle side loads cold flow testing, nozzle extension film cooling flow testing, control system testing with hardware in the loop, and nozzle extension emissivity coating tests. In parallel with hardware manufacturing, work is progressing on the new A-3 test stand to support full duration altitude testing. The Stennis A-2 test stand is scheduled to be turned over to the Constellation Program in September 2010 to be modified for J-2X testing also. As the structural steel was rising on the A-3 stand, work was under way in the nearby E complex on the chemical steam generator and subscale diffuser concepts to be used to evacuate the A-3 test cell and simulate altitude conditions.
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0108 , M10-0474 , 57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-08-13
    Beschreibung: The Early Flight Fission Test Facility (EFF-TF) was established by the Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations. The EFF-TF is currently supporting an effort to develop an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled (Sodium-Potassium eutectic, NaK-78) reactor design. This design was derived from the only fission system that the United States has deployed for space operation, the Systems for Nuclear Auxiliary Power (SNAP) 10A reactor, which was launched in 1965. Two prototypical components recently tested at MSFC were a pair of Stirling power conversion units that would be used in a reactor system to convert heat to electricity, and an annular linear induction pump (ALIP) that uses travelling electromagnetic fields to pump the liquid metal coolant through the reactor loop. First ever tests were conducted at MSFC to determine baseline performance of a pair of 1 kW Stirling convertors using NaK as the hot side working fluid. A special test rig was designed and constructed and testing was conducted inside a vacuum chamber at MSFC. This test rig delivered pumped NaK for the hot end temperature to the Stirlings and water as the working fluid on the cold end temperature. These test were conducted through a hot end temperature range between 400 to 550C in increments of 50 C and a cold end temperature range from 30 to 70 C in 20 C increments. Piston amplitudes were varied from 6 to 1 1mm in .5 mm increments. A maximum of 2240 Watts electric was produced at the design point of 550 hot end, 40 C cold end with a piston amplitude of 10.5mm. This power level was reached at a gross thermal efficiency of 28%. A baseline performance map was established for the pair of 1kW Stirling convertors. The performance data will then be used for design modification to the Stirling convertors. The ALIP tested at MSFC has no moving parts and no direct electrical connections to the liquid metal containing components. Pressure is developed by the interaction of the magnetic field produced by the stator and the current which flows as a result of the voltage induced in the liquid metal contained in the pump duct. Flow is controlled by variation of the voltage supplied to the pump windings. Under steady-state conditions, pump performance is measured for flow rates from 0.5-4.3 kg/s. The pressure rise developed by the pump to support these flow rates is roughly 5-65 kPa. The RMS input voltage (phase-to-phase voltage) ranges from 5-120 V, while the frequency can be varied arbitrarily up to 60 Hz. Performance is quantified at different loop temperature levels from 50 C up to 650 C, which is the peak operating temperature of the proposed AFSP reactor. The transient response of the pump is also evaluated to determine its behavior during startup and shut-down procedures.
    Schlagwort(e): Spacecraft Propulsion and Power
    Materialart: M10-0333 , 57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|4th Spacecraft Propulsion Joint Subcommittee Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|5th Liquid Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States|7th Modeling and Simulation Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...