ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    Publication Date: 2024-04-30
    Description: The recent deliverable describes the development and the characteristics of the European Fluid Atlas (EFA) created in the frame of the REFLECT project by University of Miskolc. In the Atlas, formerly existing and newly measured data of geothermal fluids are visualised. Fluid data were collected from 21 European countries. The layers provide point feature information presented on a base map, including geography, geology, and depth range, as well as physical, chemical and microbial properties of fluids. Data of wells, rocks and reservoirs are also available. The focus is on fluids used for electricity generation (〉 100 °C), but data from heat projects are also included. A free and open-source cross-platform is used for the visualisation, in which the geographic information system provides the environment to view, edit and analyse geospatial data. The interface includes query and filtering tools to explore the database with a map-based visualization. The query results can be downloaded as an excel worksheet. By selecting the entire dataset, the downloaded report contains all the data published on EFA.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    Publication Date: 2024-04-29
    Description: Present day system Earth research utilizes the tool ‘Scientific Drilling’ to access samples and to monitor deep Earth processes that cannot be tackled by other scientific means. Unlike most laboratory experiments or computer modelling, drilling projects are massive field endeavours requiring intense collaboration of researchers with engineers and service providers. In the framework of the International Continental Scientific Drilling Program, ICDP, more than seventy drilling projects have been conducted, from multiyear big research programs to short, smallscale deployments such as lake drilling projects. ICDP has supported these projects not only through grants covering field-related costs, but also through a variety of scientific-technical services and support, as well as active help in data management, outreach and publication. These services are described in this booklet. Due to its instructional character, we call it the ICDP Primer.
    Language: English
    Type: info:eu-repo/semantics/book
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-11
    Description: This dataset reports measurements from a laboratory incubation of soils sourced from a boreal peatland and surrounding habitats (Siikaneva Bog, Finland). In August 2021, soil cores were collected from three habitat zones: a well-drained upland forest, an intermediate margin ecotone, and a Sphagnum moss bog. The cores from each habitat were taken from surface to approximately 50cm below surface using an Eijelkamp peat corer and subdivided by soil horizon. The samples were then incubated anaerobically for 140 days in three temperature treatment groups (0, 4, 20°C). Subsamples of the incubations headspace (250 µL) were measured on a gas chromatograph (7890A, Agilent Technologies, USA) with flame ionization detection (FID) for CO2 and CH4 concentrations. The rate of respiration from the samples were calculated per gram carbon and per gram soil as described in the method of Robertson., et al. (1999) and reported here, along with other relevant parameters.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR
    Publication Date: 2024-01-30
    Description: With the ongoing deployment of Global Navigation Satellite Systems (GNSS) ground stations and the modernization of satellite signal systems, the utilization of various augmentation technologies enables the realization of Precise Point Positioning (PPP) in real-time. Augmentation technology, which introduces precise atmospheric and signal-related delays, has become an essential component of high-precision real-time services and is attracting growing interest in scientific research, disaster monitoring, autopilot, etc. Previous studies have dedicated significant efforts to enhance the generation and dissemination of augmentation information on the service side and improve real-time positioning algorithms on the user side. The real-time atmosphere augmentation information with sufficient accuracy and proper constraint, and reliable Ambiguity Resolution (AR) for this purpose is the main focus of current GNSS research. However, these efforts have primarily been concentrated on small or medium-sized regions with the capability for transmitting massive data volumes. Alternatively, they have focused on larger areas, but with slow convergence due to the imprecise nature of atmosphere information. To address the challenge posed by the trade-offs among service area size, correction volume, and the precision of represented correction, a new augmentation strategy is proposed. This approach integrates the advantages of atmospheric delay fitting models, unmodeled residuals, and uncertainty information to achieve rapid and high-precision positioning, all while reducing data transmission volume for larger areas. It also allows users to implement different positioning modes depending on their communication capacity. Additionally, all deviations among different types of receivers and satellite signals are calibrated in this study for reliable AR can be achieved on all reference stations. The main contribution of this thesis is summarized as follows. With the real-time precise orbit, clock, and Uncalibrated Phase Delay (UPD) products, precise atmospheric delay corrections relying on reliable AR can be derived for large-areas augmentation services. To address the challenge of achieving reliable AR across different receiver types and various satellite signals, this thesis proposes a comprehensive method for calibrating receiver-type-related satellite-specific deviations and analyzes the impact of satellite signal bias corrections in data processing. The primary objective is to enhance the reliability of AR, enabling the utilization of all available signals and receiver types in large-area services. Subsequently, new tropospheric and ionospheric delay fitting models applied for large-area are carried out according to the properties of their propagation paths. In addition, the corresponding atmospheric delay uncertainty for large areas is introduced based on the fitting residuals. Finally, a hierarchical mode is developed for augmentation services, leveraging the advantages of the fitting model and uncertainty grid to reduce data volume and incorporating regional fitting residuals using the interpolation model and ionospheric delay error function, depending on the network capability. Based on hierarchical augmentation, positioning in large areas can not only achieve rapid/instantaneous high-precision convergence but also overcome the conflict among correction volume, represented precision, and coverage size. In order to derive precise atmospheric delay and accelerate positioning, implementing reliable and robust AR across all types of receivers and satellite signals is essential. It also demonstrates and discusses the advantages of calibrating satellite-signal and receiver-type-related satellite-specific deviations in AR solutions. The deviations related to receivers in terms of UPD products are assessed and calibrated, confirming that a 0.03 cycle consistency in wide lane UPD can be achieved. The effectiveness of the proposed approach is demonstrated using GPS satellite signals, which can improve the AR rate by at least 10% and produce more reliable results. In addition, the impact of different signal settings and corrections on orbit, clock, and UPD generation, as well as positioning and pseudo-range signal systematic and stochastic residuals, is analyzed. These processing strategies provide flexible observation selections, allowing the utilization of all available satellite signals and receiver types, thereby enabling reliable AR and a higher fixing rate. As a result, an AR fixing rate exceeding 95% is achievable across all stations in large-area services. For precise atmospheric delay modeling over large areas, new models are proposed, including a tropospheric Zenith Wet Delay (ZWD) model and a satellite-wise ionospheric slant delay fitting model. The tropospheric delay model takes the exponential function of water vapor vertical changes into consideration, addressing model anomalies in areas with large altitude differences. The new ionospheric delay fitting model introduces the trigonometric functions to describe differences in slant path delays between the optimal reference propagation path and others, achieving superior modeling performance in large areas. The precision of the fitting model, utilizing a 200 km station-spacing network, demonstrates tropospheric ZWD and ionospheric slant delays of 1.3 cm and 8.9 cm, respectively, with smaller standard deviations. These new fitting models overcome the challenge of handling massive information for providing station-wise corrections and avoid an increase in the number of coefficients. In addition to the function model, the stochastic model, i.e., uncertainty information, is essential for describing the quality of corrections. The atmospheric delay uncertainty for the large-area fitting model is generated based on the fitting residuals and represented in forms of grid-point. Additionally, regional ionosphere unmodeled residual uncertainty is represented by the form of liner function, which is established by the relationship between distance and interpolation precision through inter-satellite cross-verification among all reference stations. The differences between uncertainty value and real delays are 2.5 cm and 0.5 cm for grid and function forms, respectively. For real-time applications in large areas, the fitting model and grid-based atmosphere uncertainty serve as the essential information, satisfying the requirement of rapid positioning. By further incorporating unmodeled residuals and ionosphere error function, a hierarchical augmentation model is provided. Based on the fitting model established for large areas, unmodeled residuals are further introduced as optional compensation for specific areas, depending on the magnitude of fitting residuals. This approach results in a 97% reduction in tropospheric delay and a 65% reduction in ionospheric delay transmission volume. Furthermore, leveraging the regional high capability of communication, 85.3% of all solutions can achieve instantaneous convergence at the first epoch with the aid of corresponding regional compensation. This thesis proposes a large areas augmentation service to overcome the conflict among correction data volume, represented precision, and coverage size. It demonstrates the benefits of an augmentation mode that integrates regional information into large-area services. Under these conditions, a more reliable and rapid AR solution can be easily achieved based on precise atmospheric delay correction and uncertainty in large areas with fewer data volume requirements. This is beneficial for actual real-time services and applications.
    Description: Mit der laufenden Bereitstellung von Bodenstationen für globale Navigationssatellitensysteme (GNSS) und der Modernisierung von Satellitensignal-Systemen ermöglicht die Nutzung verschiedener Augmentationstechnologien die Realisierung der Präzisen Punkt-Positionierung (PPP) in Echtzeit. Augmentationstechnologie, die präzise atmosphärische und signalbezogene Verzögerungen einführt, ist zu einem wesentlichen Bestandteil hochpräziser Echtzeitdienste geworden und findet wachsendes Interesse in wissenschaftlicher Forschung, Katastrophenüberwachung, Autopiloten usw. Frühere Studien haben erhebliche Anstrengungen darauf verwendet, die Erzeugung und Verbreitung von Augmentationsinformationen auf der Dienstseite zu verbessern und Echtzeit-Positionierungsalgorithmen auf der Benutzerseite zu optimieren. Die Echtzeit-Atmosphärenaugmentationsinformationen mit ausreichender Genauigkeit und angemessener Einschränkung sowie zuverlässige Ambiguitätsauflösung (AR) für diesen Zweck stehen im Mittelpunkt der aktuellen GNSS-Forschung. Diese Bemühungen konzentrierten sich jedoch hauptsächlich auf kleine oder mittelgroße Regionen mit der Fähigkeit zur Übertragung großer Datenmengen. Alternativ richteten sie sich auf größere Gebiete, jedoch mit langsamer Konvergenz aufgrund der ungenauen Natur der Atmosphäreninformation. Um der Herausforderung durch die Abwägung zwischen Größe des Dienstleistungsgebiets, Korrekturvolumen und Präzision der dargestellten Korrektur zu begegnen, wird eine neue Augmentationsstrategie vorgeschlagen. Dieser Ansatz integriert die Vorteile atmosphärischer Verzögerungsanpassungsmodelle, nicht modellierter Reste und Unsicherheitsinformationen, um eine schnelle und hochpräzise Positionierung zu erreichen, und das bei gleichzeitiger Reduzierung der Datenübertragungsvolumina für größere Gebiete. Es ermöglicht den Benutzern auch, verschiedene Positionierungsmodi je nach ihrer Kommunikationskapazität zu implementieren. Zusätzlich werden in dieser Studie alle Abweichungen zwischen verschiedenen Typen von Empfängern und Satellitensignalen kalibriert, um eine zuverlässige AR an allen Referenzstationen zu erreichen. Die Hauptbeiträge dieser Arbeit werden wie folgt zusammengefasst. Mit den Echtzeit-Präzbitbahnen, Uhren und Uncalibrated Phase Delay (UPD)-Produkten können präzise atmosphärische Verzögerungskorrekturen für großflächige Augmentationsdienste abgeleitet werden, die auf zuverlässiger AR basieren. Um die Herausforderung zu bewältigen, eine zuverlässige AR über verschiedene Empfängertypen und verschiedene Satellitensignale hinweg zu erreichen, schlägt diese Arbeit eine umfassende Methode zur Kalibrierung von empfängertypbezogenen satellspezifischen Abweichungen vor und analysiert die Auswirkungen von Korrekturen für Satellitensignalverzerrungen in der Datenverarbeitung. Das Hauptziel besteht darin, die Zuverlässigkeit der AR zu verbessern und die Nutzung aller verfügbaren Signale und Empfängertypen in großflächigen Diensten zu ermöglichen. Anschließend werden neue troposphärische und ionosphärische Verzögerungsanpassungsmodelle für großflächige Anwendungen gemäß den Eigenschaften ihrer Ausbreitungspfade durchgeführt. Darüber hinaus wird die entsprechende atmosphärische Verzögerungsunsicherheit für große Gebiete auf der Grundlage der Anpassungsreste eingeführt. Schließlich wird ein hierarchischer Modus für Augmentationsdienste entwickelt, der die Vorteile des Anpassungsmodells und des Unsicherheitsgitters nutzt, um das Datenvolumen zu reduzieren und regionale Anpassungsreste unter Verwendung des Interpolationsmodells und der ionosphärischen Verzögerungsfehlerfunktion, abhängig von der Netzwerkfähigkeit, zu integrieren. Basierend auf der hierarchischen Augmentation kann die Positionierung in großen Gebieten nicht nur eine schnelle/instantane hochpräzise Konvergenz erreichen, sondern auch den Konflikt zwischen Korrekturvolumen, dargestellter Präzision und Abdeckungsgröße überwinden. Um präzise atmosphärische Verzögerungen abzuleiten und die Positionierung zu beschleunigen, ist es entscheidend, eine zuverlässige und robuste AR über alle Arten von Empfängern und Satellitensignalen zu implementieren. Es zeigt auch die Vorteile der Kalibrierung von satellitensignal- und empfängertypbezogenen satellspezifischen Abweichungen in AR-Lösungen auf. Die Abweichungen im Zusammenhang mit Empfängern in Bezug auf UPD-Produkte werden bewertet und kalibriert, wobei bestätigt wird, dass eine Konsistenz von 0,03 Zyklen bei Wide-Lane-UPD erreicht werden kann. Die Wirksamkeit des vorgeschlagenen Ansatzes wird unter Verwendung von GPS-Satellitensignalen demonstriert, die die AR-Rate um mindestens 10% verbessern und zu zuverlässigeren Ergebnissen führen können. Darüber hinaus wird der Einfluss unterschiedlicher Signalparameter und Korrekturen auf die Erzeugung von Orbit, Uhr und UPD sowie auf die Positionierung und systematische und stochastische Reste der Pseudo-Range-Signale analysiert. Diese Verarbeitungsstrategien bieten flexible Auswahlmöglichkeiten bei der Beobachtung und ermöglichen die Nutzung aller verfügbaren Satellitensignale und Empfängertypen, wodurch eine zuverlässige AR und eine höhere Fixierungsrate ermöglicht wird. Als Ergebnis ist eine AR-Fixierungsrate von über 95% bei allen Stationen in großflächigen Diensten erreichbar. Für eine präzise Modellierung atmosphärischer Verzögerungen über großen Gebieten werden neue Modelle vorgeschlagen, darunter ein troposphärisches Zenith Wet Delay (ZWD)-Modell und ein satellitenweises ionosphärisches Schrägverzögerungsanpassungsmodell. Das troposphärische Verzögerungsmodell berücksichtigt die exponentielle Funktion der vertikalen Änderungen des Wasserdampfs und behebt Modellanomalien in Gebieten mit großen Höhendifferenzen. Das neue ionosphärische Verzögerungsanpassungsmodell verwendet trigonometrische Funktionen, um Unterschiede in den Schrägpfadverzögerungen zwischen dem optimalen Referenzausbreitungspfad und anderen zu beschreiben und erreicht so eine überlegene Modellierungsleistung in großen Gebieten. Die Präzision des Anpassungsmodells, unter Verwendung eines 200 km-Stationen-Netzwerks, zeigt troposphärische ZWD- und ionosphärische Schrägverzögerungen von jeweils 1,3 cm und 8,9 cm mit kleineren Standardabweichungen. Diese neuen Anpassungsmodelle überwinden die Herausforderung, massive Informationen für die Bereitstellung stationsspezifischer Korrekturen zu verarbeiten, und vermeiden eine Zunahme der Anzahl der Koeffizienten. Neben dem Funktionsmodell ist das stochastische Modell, d. h. Unsicherheitsinformationen, entscheidend für die Beschreibung der Qualität der Korrekturen. Die Unsicherheit der atmosphärischen Verzögerung für das großflächige Anpassungsmodell wird auf der Grundlage der Anpassungsreste generiert und in Form von Gitterpunkten dargestellt. Zusätzlich wird die regionale ionosphärische nicht modellierte Restunsicherheit durch die Form einer linearen Funktion repräsentiert, die durch die Beziehung zwischen Entfernung und Interpolationsgenauigkeit durch inter-satellitenkreuz-Verifikation zwischen allen Referenzstationen etabliert wird. Die Unterschiede zwischen Unsicherheitswert und realen Verzögerungen betragen 2,5 cm bzw. 0,5 cm für Gitter- und Funktionsformen. Für Echtzeitanwendungen in großen Gebieten dienen das Anpassungsmodell und die gitterbasierte Atmosphärenunsicherheit als wesentliche Informationen, die die Anforderungen an schnelle Positionierung erfüllen. Durch die weitere Integration von nicht modellierten Resten und Ionosphärenfehlerfunktion wird ein hierarchisches Augmentationsmodell bereitgestellt. Basierend auf dem für große Gebiete etablierten Anpassungsmodell werden nicht modellierte Reste zusätzlich als optionale Kompensation für spezifische Bereiche eingeführt, abhängig von der Größenordnung der Anpassungsreste. Dieser Ansatz führt zu einer Reduktion von 97% der troposphärischen Verzögerung und einer Reduktion von 65% des ionosphärischen Verzögerungsvolumens. Darüber hinaus können unter Nutzung der regionalen hohen Kommunikationsfähigkeit 85,3% aller Lösungen mit Hilfe entsprechender regionaler Kompensation eine sofortige Konvergenz beim ersten Epochenzeitpunkt erreichen. Diese Dissertation schlägt einen großflächigen Augmentationsdienst vor, um den Konflikt zwischen Korrekturvolumen, dargestellter Präzision und Abdeckungsgröße zu überwinden. Sie zeigt die Vorteile eines Augmentationsmodus, der regionale Informationen in großflächige Dienste integriert. Unter diesen Bedingungen kann eine zuverlässigere und schnellere AR-Lösung basierend auf präziser atmosphärischer Verzögerungskorrektur und Unsicherheit in großen Gebieten mit geringeren Anforderungen an das Datenvolumen leicht erreicht werden. Dies ist vorteilhaft für tatsächliche Echtzeitdienste und Anwendungen.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-29
    Description: This deliverable contains the raw data that constitutes the database of microbial diversity and organic compounds in geothermal fluids used for electricity production generated during the project.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-29
    Description: Report of design and test results of downhole sampling.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-29
    Description: We provide new thermodynamic and kinetic data concerning the dissolution and precipitation of silica in hot and superhot geothermal systems. Different methods were applied, including traditional photometric methods and in situ Raman and conductimetric methods. The studies covered the interactions of silica with both pure water and saline solutions. The kinetics of silica polymerisation were studied in the presence of various metal ions and at different pH values, informed by an analysis of real geothermal water samples from the Tuzla region of Türkiye.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-24
    Description: This dataset contain stable isotope values for water samples collected ~weekly from the Rio Bermejo at the Lavalle bridge (-25.6513, -60.1277) from March 2016 to February 2018. Water samples were filtered to 0.2 micron using a custom filtration device. We measured d2H and d18O on a Picarro L-2140i Cavity Ring-Down Spectrometer at the GFZ Potsdam. Measurements were made in duplicate, normalized to the Vienna Standard Mean Ocean Water (VSMOW), and analytical uncertainty is reported as one standard deviation from the mean. River discharge was measured at the El Colorado gauging station, which is ~100 km down slope from the sampling location.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-24
    Description: This dataset provides the geochemistry data for the Holocene sediment sequence retrieved from Lake Uddelermeer (The Netherlands) in 2012. Additionally, alkane concentrations for a set of modern leaf samples are provided. Concentrations of fossil alkanes, GDGTs as well as elemental (C, N, S, H) and compound-specific delta Deuterium measurements are presented against both depth (cm) and age (cal yr. BP). A total of 59 samples were analysed. Modern leaf alkane concentrations are presented as concentrations, 10 samples were analysed. The geochemical data provides information about regional vegetation change as well as changes in effective precipitation. It was produced to inform on the age and duration of major environmental transitions during the middle and late Holocene. Cores were retrieved from the lake using a 3-m long handheld piston corer deployed from a floating coring platform during field work in April and May 2012. Samples were obtained from splits of the core and processed in the laboratory of the University of Amsterdam (the Netherlands) using standard protocols (CNHS, alkane concentrations), the laboratory of Utrecht University (the Netherlands; GDGT concentrations) and at GFZ Potsdam (Germany; delta Deuterium). Name of the Campaign: UDD Event Label: UDD-E Method: Uwitec piston corer Latitude: 52.24652778 Longitude: 5.76097222 Elevation: 24m asl Date/Time of event: 2012-05-01T14:00:00 Further information about event: Lake sediment sequence retrieved using a 60 mm piston corer deployed from a floating platform.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-24
    Description: Water samples were filtered to 0.2 micron prior to measurement. Samples for cation analysis were acidified in the field to pH 〈 2 using 6N HNO3. Cation concentrations were measured with a Varian 720 inductively coupled plasma optical emission spectrometer (ICP-OES) at the GFZ Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES), using SLRS-5 (Saint-Laurent River Surface, National Research Council - Conseil National de Recherches Canada) and USGS M212 and USGS T187 as external standards. We corrected for instrument drift by measuring an internal standard (GFZ-RW1) every 10 samples and we determined measurement uncertainty using calibration curve uncertainty. Anion concentrations were measured with a Dionex ICS1100 Ion Chromatograph, using USGS standards M206 and M212 as external standards for quality control, with uncertainty determined from triplicate analysis. We corrected cation concentrations for cyclic salt inputs following Bickle et al. (2005, doi:10.1016/j.gca.2004.11.019).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...