ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,200)
  • Kraatz, Berlin  (439)
  • AMS (American Meteorological Society)  (424)
  • Springer Berlin Heidelberg  (334)
  • PANGAEA
Collection
Publisher
Language
  • 1
    facet.materialart.
    Unknown
    Kraatz, Berlin
    In:  SUB Göttingen | KART B 140:4438; KART H 140: Landsberg bei Halle
    Publication Date: 2024-06-20
    Description: Geologische Karte 1: 25 000 mit Erläuterungen. Digitalisat des FID GEO (Fachinformationsdienst Geowissenschaften), erstellt durch das GDZ (Göttinger Digitalisierungszentrum), Karte aus dem Bestand der SUB Göttingen. Koordinaten Vorlage: Nullmeridian Ferro E 029 40 - 029 50 / N 051 36 - 051 30.
    Description: map
    Description: DFG, SUB Göttingen
    Keywords: ddc:912 ; ddc:554.3 ; Geologische Karte
    Language: German
    Type: doc-type:carthographicMaterial
    Format: 60
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Kraatz, Berlin
    In:  SUB Göttingen | Signatur KART B 140:4337; KART H 140:Gröbzig
    Publication Date: 2024-06-20
    Description: Geologische Karte 1: 25 000 mit Erläuterungen. Digitalisat des FID GEO (Fachinformationsdienst Geowissenschaften), erstellt durch das GDZ (Göttinger Digitalisierungszentrum), Karte aus dem Bestand der SUB Göttingen. Koordinaten Vorlage: Nullmeridian Ferro E 029 30 - 029 40 / N 051 42 - 051 36.
    Description: map
    Description: DFG, SUB Göttingen
    Keywords: ddc:912 ; ddc:554.3 ; Geologische Karte
    Language: German
    Type: doc-type:carthographicMaterial
    Format: 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Kraatz, Berlin
    In:  SUB Göttingen | KART B 140:4238, KART H 140:Quellendorf
    Publication Date: 2024-06-20
    Description: Geologische Karte 1: 25 000 mit Erläuterungen (Erschienen 1910). Digitalisat des FID GEO (Fachinformationsdienst Geowissenschaften), erstellt durch das GDZ (Göttinger Digitalisierungszentrum), Karte aus dem Bestand der SUB Göttingen. Koordinaten Vorlage: Nullmeridian Ferro E 029 40 - 029 50 / N 051 48 - 051 42.
    Description: map
    Description: DFG, SUB Göttingen
    Keywords: ddc:912 ; ddc:554.3 ; Geologische Karte
    Language: German
    Type: doc-type:carthographicMaterial
    Format: 74
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Kraatz, Berlin
    In:  SUB Göttingen | KART B 140:3732, KART H 140:Helmstedt
    Publication Date: 2024-06-20
    Description: Geologische Karte 1: 25 000 mit Erläuterungen. Digitalisat des FID GEO (Fachinformationsdienst Geowissenschaften), erstellt durch das GDZ (Göttinger Digitalisierungszentrum), Karte aus dem Bestand der SUB Göttingen. Koordinaten Vorlage: Nullmeridian Ferro E 028 40 - 028 50 / N 052 18 - 052 11.
    Description: map
    Description: DFG, SUB Göttingen
    Keywords: ddc:912 ; ddc:554.3 ; Geologische Karte
    Language: German
    Type: doc-type:carthographicMaterial
    Format: 118
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Kraatz, Berlin
    In:  SUB Göttingen | KART B 140:3162, KART H 140:Kreuz
    Publication Date: 2024-06-18
    Description: Geologische Karte 1: 25 000 mit Erläuterungen. Digitalisat des FID GEO (Fachinformationsdienst Geowissenschaften), erstellt durch das GDZ (Göttinger Digitalisierungszentrum), Karte aus dem Bestand der SUB Göttingen. Koordinaten Vorlage: Nullmeridian Ferro E 033 40 - 033 50 / N 052 54 - 052 48.
    Description: map
    Description: DFG, SUB Göttingen
    Keywords: ddc:554.3 ; ddc:912 ; Geologische Karte
    Language: German
    Type: doc-type:carthographicMaterial
    Format: 78
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-16
    Description: We investigate the origin of the equatorial Pacific cold sea surface temperature (SST) bias and its link to wind biases, local and remote, in the Kiel Climate Model (KCM). The cold bias is common in climate models participating in the 5 th and 6 th phases of the Coupled Model Intercomparison Project. In the coupled experiments with the KCM, the interannually varying NCEP/CFSR wind stress is prescribed over four spatial domains: globally, over the equatorial Pacific (EP), the northern Pacific (NP) and southern Pacific (SP). The corresponding EP SST bias is reduced by 100%, 52%, 12% and 23%, respectively. Thus, the EP SST bias is mainly attributed to the local wind bias, with small but not negligible contributions from the extratropical regions. Erroneous ocean circulation driven by overly strong winds cause the cold SST bias, while the surface-heat flux counteracts it. Extratropical Pacific SST biases contribute to the EP cold bias via the oceanic subtropical gyres, which is further enhanced by dynamical coupling in the equatorial region. The origin of the wind biases is examined by forcing the atmospheric component of the KCM in a stand-alone mode with observed SSTs and simulated SSTs from the coupled experiments. Wind biases over the EP, NP and SP regions originate in the atmosphere model. The cold EP SST bias substantially enhances the wind biases over all three regions, while the NP and SP SST biases support local amplification of the wind bias. This study suggests that improving surface-wind stress, at and off the equator, is a key to improve mean-state equatorial Pacific SST in climate models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-30
    Description: Past vegetation, fire, and climate dynamics, as well as human impact, have been reconstructed for the first time in the highlands of the Gilan province in the Alborz mountains (above the Hyrcanian forest) for the last 4,300 cal yrs bp. Multi-proxy analysis, including pollen, spores, non-pollen palynomorphs, charcoal, and geochemical analysis, has been applied to investigate the environmental changes at 2,280 m a.s.l., above the Hyrcanian forest. Dominant steppe vegetation occurred in the study area throughout the recorded period. The formation of the studied mire deposits, as well as vegetation composition, suggest a change to wetter climatic conditions after 4,300 until 1,700 cal yrs bp. Fires were frequent, which may imply long-lasting anthropogenic activities in the area. Less vegetation cover with a marked decrease of the Moisture Index (MI) suggests drier conditions between 1,700 and 1,000 cal yrs bp. A high proportion of Cichorioideae and Amaranthaceae, as well as the reduction of trees, in particular Fagus and Quercus, at lower elevations, indicate human activities such as intense livestock grazing and deforestation. Soil erosion as the result of less vegetation due to dry conditions and/or human activities can be reconstructed from a marked increase of Glomus spores and high values of K and Ti. Since 1,000 cal yrs bp, the increasing MI, as well as the rise of Poaceae and Cyperaceae together with forest recovery, suggest a change to wetter conditions. The occurrence of still frequent Cichorioideae and Plantago lanceolata along with Sordaria reflect continued intense grazing of livestock by humans.
    Description: Deutsche Forschungsgemeinschaft (DE)
    Description: Georg-August-Universität Göttingen (1018)
    Keywords: ddc:561 ; Late Holocene ; Northern Iran ; Multi-proxy studies ; Hyrcanian mountain vegetation ; Climate change ; Human impact
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Kraatz, Berlin
    In:  SUB Göttingen | KART B 140:1289 | KART H 140:Königsberg-Ost
    Publication Date: 2024-05-23
    Description: Geologische Karte 1: 25 000 mit Erläuterungen. Digitalisat des FID GEO (Fachinformationsdienst Geowissenschaften), erstellt durch das GDZ (Göttinger Digitalisierungszentrum), Karte aus dem Bestand der SUB Göttingen. Koordinaten Vorlage: Nullmeridian Ferro E 038 10 – 038 20 / N 054 42 - 054 48.
    Description: map
    Description: DFG, SUB Göttingen
    Keywords: ddc:912 ; ddc:554.3 ; Geologische Karte
    Language: German
    Type: doc-type:carthographicMaterial
    Format: 78
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-19
    Description: Purpose: The surface store governs the rainwater partition, e.g., water storage and evaporation on paved surfaces, especially for low-intensity and low-sum rain events, which account for the greatest part of the total rainfall in a temperate climate city like Berlin, Germany. The surface store S is a fixed value, dependent on surface relief and pore system characteristics. Contrary, in this study, the surface storage was assumed to depend also on the rain intensity, thus being variable from event to event. Materials and methods: The surface store filling dynamics for dense (DP), porous (PP), and highly infiltrative (IP) paving materials were studied in a rainfall simulator. Irrigation intensities p ranged from 0.016 to 0.1 mm min〈sup〉−1〈/sup〉 which represent the 25 to 88% quantiles of the rain event distribution in Berlin, Germany (1961 to 1990). Results and discussion: Three surface stores can be separated: storage until initial runoff, S〈sub〉f〈/sub〉, at maximum filling, S〈sub〉m〈/sub〉, and for steady-state runoff, S〈sub〉eq〈/sub〉—all of them can be regarded as effective stores depending on the aim of its use. The equilibrium store varies from 0.2 to 3 mm for DP, PP, and IP for the investigated rainfall intensities. Conclusions: For all pavers, the surface store depends on rainfall intensity, which was shown experimentally and confirmed by numerical simulation of the infiltration. We introduce a simple and robust method to describe S〈sub〉f〈/sub〉, S〈sub〉m〈/sub〉 = f(p) for different pavers. Pavers can evaporate a multiple of their surface store per day, depending on the rainfall distribution, which implicates the need for high temporal resolutions in urban hydrology modeling. Pavers can evaporate a multiple of their surface store per day, depending on the rainfall distribution. That implicates the need for high temporal resolutions in urban hydrology modeling.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.48 ; Evaporation ; Paved soils ; Paving material ; Precipitation intensity ; Surface store ; Water storage
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-08
    Description: For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...