ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (343)
  • American Association for the Advancement of Science (AAAS)  (343)
  • Elsevier
  • PANGAEA
  • 1985-1989  (343)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (343)
  • Elsevier
  • PANGAEA
Years
Year
  • 1
    Publication Date: 1989-12-22
    Description: Certain inflammatory stimuli render cultured human vascular endothelial cells hyperadhesive for neutrophils. This state is transient and reversible, in part because activated endothelial cells secrete a leukocyte adhesion inhibitor (LAI). LAI was identified as endothelial interleukin-8 (IL-8), the predominant species of which is an extended amino-terminal IL-8 variant. At nanomolar concentrations, purified endothelial IL-8 and recombinant human IL-8 inhibit neutrophil adhesion to cytokine-activated endothelial monolayers and protect these monolayers from neutrophil-mediated damage. These findings suggest that endothelial-derived IL-8 may function to attenuate inflammatory events at the interface between vessel wall and blood.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gimbrone, M A Jr -- Obin, M S -- Brock, A F -- Luis, E A -- Hass, P E -- Hebert, C A -- Yip, Y K -- Leung, D W -- Lowe, D G -- Kohr, W J -- P01-HL-36028/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1601-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2688092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Factors/pharmacology ; Cell Adhesion/drug effects ; Cells, Cultured ; Chemotactic Factors/*isolation & purification/pharmacology ; Culture Media/analysis ; Cytokines ; Endothelium, Vascular/cytology/drug effects/*physiology ; Humans ; Interleukin-1/*pharmacology ; Interleukin-8 ; Interleukins/*isolation & purification/pharmacology ; Molecular Sequence Data ; Neutrophils/cytology/drug effects/*physiology ; Recombinant Proteins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-12-22
    Description: The pituitary hormone thyrotropin, or thyroid-stimulating hormone (TSH), is the main physiological agent that regulates the thyroid gland. The thyrotropin receptor (TSHR) was cloned by selective amplification with the polymerase chain reaction of DNA segments presenting sequence similarity with genes for G protein-coupled receptors. Out of 11 new putative receptor clones obtained from genomic DNA, one had sequence characteristics different from all the others. Although this clone did not hybridize to thyroid transcripts, screening of a dog thyroid complementary DNA (cDNA) library at moderate stringency identified a cDNA encoding a 4.9-kilobase thyroid-specific transcript. The polypeptide encoded by this thyroid-specific transcript consisted of a 398-amino acid residue amino-terminal segment, constituting a putative extracellular domain, connected to a 346-residue carboxyl-terminal domain that contained seven putative transmembrane segments. Expression of the cDNA conferred TSH responsiveness to Xenopus oocytes and Y1 cells and a TSH binding phenotype to COS cells. The TSHR and the receptor for luteinizing hormone-choriogonadotropin constitute a subfamily of G protein-coupled receptors with distinct sequence characteristics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parmentier, M -- Libert, F -- Maenhaut, C -- Lefort, A -- Gerard, C -- Perret, J -- Van Sande, J -- Dumont, J E -- Vassart, G -- R01-DK21732/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1620-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherche Interdisciplinaire, Faculte de Medecine, Universite Libre de Bruxelles, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2556796" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Cell Line ; *Cloning, Molecular ; Cyclic AMP ; Dogs ; Female ; *Genes ; Molecular Sequence Data ; Oocytes/drug effects/metabolism ; Organ Specificity ; Polymerase Chain Reaction/methods ; RNA, Messenger/genetics ; Receptors, Thyrotropin/*genetics ; Thyrotropin/pharmacology ; Transcription, Genetic ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-12-22
    Description: T cell clones obtained from a human volunteer immunized with Plasmodium falciparum sporozoites specifically recognized the native circumsporozoite (CS) antigen expressed on P. falciparum sporozoites, as well as bacteria- and yeast-derived recombinant falciparum CS proteins. The response of these CD4+ CD8- cells was species-specific, since the clones did not proliferate or secrete gamma interferon when challenged with sporozoites or recombinant CS proteins of other human, simian, or rodent malarias. The epitope recognized by the sporozoite-specific human T cell clones mapped to the 5' repeat region of the CS protein and was contained in the NANPNVDPNANP sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nardin, E H -- Herrington, D A -- Davis, J -- Levine, M -- Stuber, D -- Takacs, B -- Caspers, P -- Barr, P -- Altszuler, R -- Clavijo, P -- AI25085/AI/NIAID NIH HHS/ -- AI62533/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1603-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical and Molecular Parasitology, New York University, NY 10010.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2480642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/*immunology ; Antigens, Protozoan/*immunology ; Cells, Cultured ; Clone Cells ; Epitopes/*analysis ; Humans ; Interferon-gamma/biosynthesis ; Lymphocyte Activation ; Malaria/*immunology ; Molecular Sequence Data ; Plasmodium falciparum/*immunology ; *Protozoan Proteins ; Recombinant Proteins/immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-12-22
    Description: Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiesel, R -- Wissinger, B -- Schuster, W -- Brennicke, A -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1632-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Genbiologische Forschung, Berlin, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2480644" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; DNA, Mitochondrial/genetics ; Electron Transport Complex IV/*genetics ; *Genes, Plant ; Humans ; Mitochondria/*enzymology ; Molecular Sequence Data ; Plants/enzymology/*genetics ; RNA/*genetics ; RNA Processing, Post-Transcriptional ; RNA, Messenger/genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-12-15
    Description: A protein secreted by cultured rat heart cells can direct the choice of neurotransmitter phenotype made by cultured rat sympathetic neurons. Structural analysis and biological assays demonstrated that this protein is identical to a protein that regulates the growth and differentiation of embryonic stem cells and myeloid cells, and that stimulates bone remodeling and acute-phase protein synthesis in hepatocytes. This protein has been termed D factor, DIA, DIF, DRF, HSFIII, and LIF. Thus, this cytokine, like IL-6 and TGF beta, regulates growth and differentiation in the embryo and in the adult in many tissues, now including the nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamamori, T -- Fukada, K -- Aebersold, R -- Korsching, S -- Fann, M J -- Patterson, P H -- New York, N.Y. -- Science. 1989 Dec 15;246(4936):1412-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Division, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2512641" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Differentiation ; Cells, Cultured ; Choline/*physiology ; Cloning, Molecular ; DNA/genetics ; *Growth Inhibitors/genetics/pharmacology/secretion ; Humans ; Immunosorbent Techniques ; *Interleukin-6 ; Leukemia Inhibitory Factor ; *Lymphokines ; Mice ; Molecular Sequence Data ; Myocardium/*metabolism ; Neurons/*cytology ; Rats ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-12-08
    Description: A novel bacteriophage lambda vector system was used to express in Escherichia coli a combinatorial library of Fab fragments of the mouse antibody repertoire. The system allows rapid and easy identification of monoclonal Fab fragments in a form suitable for genetic manipulation. It was possible to generate, in 2 weeks, large numbers of monoclonal Fab fragments against a transition state analog hapten. The methods described may supersede present-day hybridoma technology and facilitate the production of catalytic and other antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huse, W D -- Sastry, L -- Iverson, S A -- Kang, A S -- Alting-Mees, M -- Burton, D R -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1275-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2531466" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/*biosynthesis/genetics ; Antibody Specificity ; Antigen-Antibody Reactions ; Bacteriophage lambda/*genetics ; Base Sequence ; Cloning, Molecular/methods ; Escherichia coli/genetics ; Gene Amplification ; Gene Library ; *Genetic Vectors ; Hemocyanin/analogs & derivatives/immunology ; Immunoglobulin Fab Fragments/biosynthesis ; Immunoglobulin Fragments/*biosynthesis/genetics ; Mice ; Molecular Sequence Data ; Organophosphorus Compounds/immunology ; Recombinant Proteins/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-12-08
    Description: Vascular permeability factor (VPF) is a 40-kilodalton disulfide-linked dimeric glycoprotein that is active in increasing blood vessel permeability, endothelial cell growth, and angiogenesis. These properties suggest that the expression of VPF by tumor cells could contribute to the increased neovascularization and vessel permeability that are associated with tumor vasculature. The cDNA sequence of VPF from human U937 cells was shown to code for a 189-amino acid polypeptide that is similar in structure to the B chain of platelet-derived growth factor (PDGF-B) and other PDGF-B-related proteins. The overall identity with PDGF-B is 18%. However, all eight of the cysteines in PDGF-B were found to be conserved in human VPF, an indication that the folding of the two proteins is probably similar. Clusters of basic amino acids in the COOH-terminal halves of human VPF and PDGF-B are also prevalent. Thus, VPF appears to be related to the PDGF/v-sis family of proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, P J -- Hauser, S D -- Krivi, G -- Sanzo, K -- Warren, T -- Feder, J -- Connolly, D T -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Culture and Biochemistry, Monsanto Company, St. Louis, MO 63167.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479987" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Capillary Permeability/physiology ; Cell Division/physiology ; Cloning, Molecular ; Endothelium, Vascular/*cytology ; *Growth Substances ; Guinea Pigs ; Humans ; Lymphokines/*physiology ; Molecular Sequence Data ; Neovascularization, Pathologic/physiopathology ; Oncogene Proteins v-sis ; Platelet-Derived Growth Factor/physiology ; Retroviridae Proteins, Oncogenic/physiology ; Sequence Homology, Nucleic Acid ; Transforming Growth Factors ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1989-12-08
    Description: Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leung, D W -- Cachianes, G -- Kuang, W J -- Goeddel, D V -- Ferrara, N -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1306-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Genetech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479986" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Cattle ; Cell Division ; Cloning, Molecular ; Endothelium, Vascular/*cytology ; Gene Library ; Humans ; Lymphokines/genetics/*physiology/secretion ; Molecular Sequence Data ; Neovascularization, Pathologic/*physiopathology ; Sequence Homology, Nucleic Acid ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-12-01
    Description: Human immunodeficiency virus (HIV) isolates with reduced sensitivity to zidovudine (3'-azido-3'-deoxythymidine, AZT) from individuals with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex were studied to determine the genetic basis of their resistance. Most were sequential isolates obtained at the initiation of and during therapy. Comparative nucleotide sequence analysis of the reverse transcriptase (RT) coding region from five pairs of sensitive and resistant isolates identified three predicted amino acid substitutions common to all the resistant strains (Asp67----Asn, Lys70----Arg, Thr215----Phe or Tyr) plus a fourth in three isolates (Lys219----Gln). Partially resistant isolates had combinations of these four changes. An infectious molecular clone constructed with these four mutations in RT yielded highly resistant HIV after transfection of T cells. The reproducible nature of these mutations should make it possible to develop rapid assays to predict zidovudine resistance by performing polymerase chain reaction amplification of nucleic acid from peripheral blood lymphocytes, thereby circumventing current lengthy HIV isolation and sensitivity testing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larder, B A -- Kemp, S D -- New York, N.Y. -- Science. 1989 Dec 1;246(4934):1155-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Sciences Department, Wellcome Research Laboratories, Beckenham, Kent, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479983" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS-Related Complex/drug therapy/microbiology ; Acquired Immunodeficiency Syndrome/drug therapy/*microbiology ; Amino Acid Sequence ; Cloning, Molecular ; Drug Resistance/genetics ; Genes, Viral ; HIV-1/drug effects/*enzymology/genetics ; Humans ; Molecular Sequence Data ; *Mutation ; RNA-Directed DNA Polymerase/*genetics ; Zidovudine/pharmacology/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-12-01
    Description: The structure of a complex between a peptide inhibitor with the sequence N-acetyl-Thr-Ile-Nle-psi[CH2-NH]-Nle-Gln-Arg.amide (Nle, norleucine) with chemically synthesized HIV-1 (human immunodeficiency virus 1) protease was determined at 2.3 A resolution (R factor of 0.176). Despite the symmetric nature of the unliganded enzyme, the asymmetric inhibitor lies in a single orientation and makes extensive interactions at the interface between the two subunits of the homodimeric protein. Compared with the unliganded enzyme, the protein molecule underwent substantial changes, particularly in an extended region corresponding to the "flaps" (residues 35 to 57 in each chain), where backbone movements as large as 7 A are observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, M -- Schneider, J -- Sathyanarayana, B K -- Toth, M V -- Marshall, G R -- Clawson, L -- Selk, L -- Kent, S B -- Wlodawer, A -- A-127302/PHS HHS/ -- N01-C0-74101/PHS HHS/ -- SM-24483/SM/CMHS SAMHSA HHS/ -- New York, N.Y. -- Science. 1989 Dec 1;246(4934):1149-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NCI-Frederick Cancer Research Facility, BRI-Basic Research Program, MD 21701.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2686029" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chemistry, Physical ; Crystallization ; Endopeptidases/*metabolism ; Gene Products, gag/metabolism ; HIV Protease ; HIV-1/*enzymology ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; Oligopeptides/*metabolism ; Physicochemical Phenomena ; Protease Inhibitors/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...