ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (140,825)
  • Wiley  (43,879)
  • American Association for the Advancement of Science  (22,016)
  • 2020-2024  (22,282)
  • 1970-1974  (167,275)
  • 1945-1949  (17,163)
Collection
Publisher
Language
Years
Year
  • 1
    Publication Date: 2024-07-03
    Description: Highlights • All investigated sites are in quiescent stage. Multi layers of clam shell debris were the ancient sediment surfaces during high methane flux. • Current fluxes contribute to less than 2 wt % of authigenic carbonates and 2 wt % iron sulfide minerals being precipitated in 600-800 cm sediment. • The sequestration of carbon could be 〉 50 mmol C cm-2 yr-1 under current in situ condition. Abstract Methane seepage records information of the local carbon cycle with respect to the generation, consumption and sequestration of carbon. Here presents the investigation of 7 gravity cores retrieved in 2004 during cruise SO-177 in the Haiyang 4 Area at the northern slope of the South China Sea. Porewater solutes, sulfate, methane, total alkalinity, sulfide and calcium demonstrate currently the weak seep activity. Local carbon cycling and sequestration is also revealed, that dominates by anaerobic oxidation of biogenic methane to dissolved bicarbonate inducing calcium carbonate and iron sulfide minerals (mainly pyrite) precipitation. A reactive transport model was employed to quantify the carbon cycle and budget. Model results show that current methane fluxes contribute to less than 2 wt % of authigenic carbonates and 2 wt % iron sulfide minerals being precipitated in 600–800 cm sediment depth. The sequestration of carbon could be 〉 50 mmol C cm−2 yr−1 under in situ condition. The observed increase of carbonate and iron sulfide minerals at ∼100 cm, however, require higher methane fluxes to shift the zone of anaerobic oxidation of methane upwards to around 1 m below the seafloor, which have occurred during sea level low stands in the geological past. The oscillation of seepage flux contributed to the formation of multiple layers of authigenic carbonates and pyrite, which indicates the high capability of carbon sink and is speculated to be induced by the dissociation of the underlying hydrates triggered by sea level drop and or temperature increase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley | AGU (American Geophysical Union)
    Publication Date: 2024-07-02
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-02
    Description: Highlights • Accurate fault model can be built even when sparse drilling wells are available. • The multiresolution fault model provides information of faults with different sizes. • Fault model provides possibility of tectonic and fluid flow analysis simultaneously. • Modelling of faults in different scales, enable more accurate well path design. • The ANN provides optimized parameters for fault detection by ant tracking algorithm. Modelling faults plays a crucial step in the chain of studies through the first phase of the hydrocarbon exploration and its following studies in reservoir engineering, simulation and field development. This study introduces an innovative and automatic integrated approach that combines seismic multi-attributes and well data for faults modelling. The proposed strategy begins with extracting fault-related seismic attributes commonly used for seismic reservoir characterization. Chaos, variance and curvature attributes, typically highlight large-scale faults that shape the structural framework of the study field. In contrast, small-scale faults, influencing subsurface fluid flow in the fractured reservoir, are modeled using the ant-tracking algorithm applied to seismic data. Small-scale and large-scale fault models, then integrated with the conventional fault model to create an integrated discrete fracture network (DFN). This DFN model incorporates information on both large-scale and small-scale faults. The proposed strategy was applied on a geologically complex petroleum field in Iran. The results, validated using Formation Micro Imager (FMI) data, demonstrate accuracy of the integrated DFN model in comparison to conventional approaches on the studied filed, particularly in capturing small-scale faults. Consequently, it can be concluded that the proposed strategy provides a viable alternative for generating accurate DFN model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-02
    Description: Highlights • New geophysical data and samples redefine submarine volcanism in Sicilian Channel. • Three dominant bands of volcanism are distinguished. • Ancient, eroded structures aligned at 120° are tied to faulted banks in the north. • Younger band of similarly aligned volcanism in the south is linked to grabens. • Youngest structures comprise small, dispersed volcanoes with distinct orientation. Abstract The origin and role of volcanism in continental rifts remains poorly understood in comparison to other volcano-tectonic settings. The Sicilian Channel (central Mediterranean Sea) is largely floored by continental crust and represents an area affected by pronounced crustal extension and strike-slip tectonism. It hosts a variety of volcanic landforms closely associated with faults, which can be used to better understand the nature and distribution of rift-related volcanism. A paucity of appropriate seafloor data in the Sicilian Channel has led to uncertainties regarding the location, volume, sources and timing of submarine volcanism. To improve on this situation, we use newly acquired geophysical data (multibeam echosounder and magnetic data, sub-bottom profiles) and dredged seafloor samples to: (i) re-assess the evidence for submarine volcanism in the Sicilian Channel and define its spatial pattern, (ii) infer the relative age and style of magmatism, and (iii) relate this to the dominant tectonic structures in the region. Quaternary rift-related volcanism has been focused at Pantelleria and Linosa, at the northwest boundaries of their respective NW-SE trending grabens. Subsidiary and older volcanic sites potentially occur at the Linosa III and Pantelleria SE seamounts, collectively representing the only sites of recent volcanism that can be directly related to the main rift process. These long-lived polygenetic volcanic landforms have been shaped by magmatism that is directly correlated with extensional faulting and buried igneous bodies. Older volcanic landforms, sharing a similar scale and alignment, occur to the north at Nameless Bank and Adventure Bank. These deeply eroded volcanoes have likely been inactive since the Pliocene and are probably related to earlier stages of crustal thinning and underlying feeder structures in the northern region of the Sicilian Channel. Along a similar alignment, Pinne Bank, SE Pinne Bank and Cimotoe in the northern Sicilian Channel lack a surface volcanic signature but are associated with intrusive bodies or deeply buried volcanic rock masses. Terrible Bank, in the same region, also shows evidence of ancient, polygenetic magmatism, but was subject to significant erosion and lacks a prominent alignment. The much younger volcanism at Graham Volcanic Field and along the northern Capo-Granitola-Sciacca Fault Zone differs markedly from that observed in the other study areas. Here, the low-volume and scattered volcanic activity is driven by shallow-water mafic magma eruptions, which gave rise to small individual cones. These sites are associated with large fault structures away from the main rift axis and may have a distinct magmatic origin. Dispersed active fluid venting occurs across both ancient and young volcanic sites in the region and is directly associated with shallow magmatic bodies within tectonically-controlled basins. Our study provides the foundation for an updated tectonic and magmatic framework for the Sicilian Channel, and for future detailed chronological and geochemical assessment of the sources and evolution of magmatic processes in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-07-02
    Description: Aim Seamounts are conspicuous geological features with an important ecological role and can be considered vulnerable marine ecosystems (VMEs). Since many deep‐sea regions remain largely unexplored, investigating the occurrence of VME taxa on seamounts is challenging. Our study aimed to predict the distribution of four cold‐water coral (CWC) taxa, indicators for VMEs, in a region where occurrence data are scarce. Location Seamounts around the Cabo Verde archipelago (NW Africa). Methods We used species presence–absence data obtained from remotely operated vehicle (ROV) footage collected during two research expeditions. Terrain variables calculated using a multiscale approach from a 100‐m‐resolution bathymetry grid, as well as physical oceanographical data from the VIKING20X model, at a native resolution of 1/20°, were used as environmental predictors. Two modelling techniques (generalized additive model and random forest) were employed and single‐model predictions were combined into a final weighted‐average ensemble model. Model performance was validated using different metrics through cross‐validation. Results Terrain orientation, at broad scale, presented one of the highest relative variable contributions to the distribution models of all CWC taxa, suggesting that hydrodynamic–topographic interactions on the seamounts could benefit CWCs by maximizing food supply. However, changes at finer scales in terrain morphology and bottom salinity were important for driving differences in the distribution of specific CWCs. The ensemble model predicted the presence of VME taxa on all seamounts and consistently achieved the highest performance metrics, outperforming individual models. Nonetheless, model extrapolation and uncertainty, measured as the coefficient of variation, were high, particularly, in least surveyed areas across seamounts, highlighting the need to collect more data in future surveys. Main Conclusions Our study shows how data‐poor areas may be assessed for the likelihood of VMEs and provides important information to guide future research in Cabo Verde, which is fundamental to advise ongoing conservation planning.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-02
    Description: Volcanic flank collapses, especially those in island settings, have generated some of the most voluminous mass transport deposits on Earth and can trigger devastating tsunamis. Reliable tsunami hazard assessments for flank collapse-driven tsunamis require an understanding of the complex emplacement processes involved. The seafloor sequence southeast of Montserrat (Lesser Antilles) is a key site for the study of volcanic flank collapse emplacement processes that span subaerial to submarine environments. Here, we present new 2D and 3D seismic data as well as MeBo drill core data from one of the most extensive mass transport deposits offshore Montserrat, which exemplifies multi-phase landslide deposition from volcanic islands. The deposits reveal emplacement in multiple stages including two blocky volcanic debris avalanches, secondary seafloor failure and a late-stage erosive density current that carved channel-like incisions into the hummocky surface of the deposit about 15 km from the source region. The highly erosive density current potentially originated from downslope-acceleration of fine-grained material that was suspended in the water column earlier during the slide. Late-stage erosive turbidity currents may be a more common process following volcanic sector collapse than has been previously recognized, exerting a potentially important control on the observed deposit morphology as well as on the runout and the overall shape of the deposit. Key Points Landslide emplacement offshore Montserrat included volcanic flank collapses, sediment incorporation, and a late-stage erosive flow Highly erosive flows are likely to be common processes during volcanic flank collapse deposition Pre-existing topography plays a major role in shaping flank collapse-associated mass transport deposits Plain Language Summary Disintegration of volcanic islands can cause very large landslides and destructive tsunamis. To assess the tsunami hazard of such events, it is crucial to understand the processes that are involved in their formation. We present new insights from seismic data and drill cores from a landslide deposit offshore Montserrat, a volcanic island in the Lesser Antilles Arc in the Caribbean. Our analysis reveals the emplacement of landslide material in several stages, including multiple volcanic flank collapses, incorporation of seafloor sediments and an erosive flow that carved channels into the top of the deposit right after its emplacement. We suggest that highly erosive flows are a common process during volcanic flank collapse deposition and that they play a significant role in the shaping of the deposit's appearance.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-07-02
    Description: Highlights • Ankaramites are Ca-rich and Ni-poor porphyritic basalts that are common in oceanic arcs. • Melt inclusions from Kibblewhite Volcano show similar compositions to ankaramites. • Ankaramite is a primary magma component in oceanic arcs. • Interaction between melt and mantle can produce ankaramitic melts. • Harzburgite formed by melt-mantle interactions is the source of high-Mg andesites. Abstract Ankaramites, which are clinopyroxene-rich basalts with primitive whole-rock compositions (Mg# 〉65), are common in oceanic arcs and are characterized by high whole-rock CaO/Al2O3 (〉1.0) ratios and olivine crystals with anomalously low nickel contents (〈0.2 wt% NiO). These geochemical characteristics cannot be explained by the melting of ordinary mantle peridotite. However, their origin is critical for understanding the formation of primary magmas in oceanic arcs. Here, we investigated olivine-hosted melt inclusions (MIs) from ankaramites and magnesian andesites of the Kibblewhite Volcano in the Kermadec arc. The MIs from the ankaramites have similar major and trace element characteristics to the host rocks, indicating that the ankaramites did not result from an accumulation of mafic minerals but rather represent the primary magma in the Kibblewhite Volcano. The MIs from the magnesian andesites were hosted in forsteritic olivine xenocrysts with a wide range of NiO contents (Fo90–92; 0.13–0.39 wt% NiO) and have similar major element compositions to the ankaramites but exhibit a wide range of CaO/Al2O3 (0.85–1.54). The trace element characteristics of the MIs from the magnesian andesites do not match those of the host rocks, indicating that they are not primary melts of the magnesian andesites but primitive basaltic melts generated before the magnesian andesites formed. Interestingly, the CaO/Al2O3 ratio of MIs from the magnesian andesites was negatively correlated with the NiO content of their host olivines. This correlation suggests that the composition of the primary basaltic magmas of the Kibblewhite Volcano changed continuously from peridotite-derived to ankaramitic. This correlation could not be explained by grain-scale process, crustal anatexis, or contribution of slab-derived carbonate-rich fluids. Instead, we propose that this correlation can be explained by the interaction of the ascending primary basaltic melts with the lithospheric mantle. During melt-mantle interaction, the assimilation of clinopyroxene and fractionation of olivine and orthopyroxene caused the CaO/Al2O3 ratio to increase in the melt and the Ni content to decrease. Furthermore, because the magnesian andesites have low CaO/Al2O3 ratios and could be derived from a clinopyroxene-poor mantle lithology, the interaction between the melt and mantle may also be closely related to the origin of the magnesian andesites at Kibblewhite Volcano. This interpretation provides a new perspective on the origin of the oceanic arc ankaramites and why primary andesitic and basaltic magmas coexist in the Kibblewhite Volcano.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-07-02
    Description: Highlights • Alkaline magmas of the TLTF island chain result from a subduction-modified mantle source and two-stage partial melting. • The role of mantle source and parental melt composition for high Cu-Au mineral potentials is important but limited. • A shallow crustal magma reservoir is key for epithermal ore formation. Abstract The Tabar-Lihir-Tanga-Feni (TLTF) island chain in northeastern Papua New Guinea formed by tectonic and alkaline to shoshonitic magmatic activity since the Pliocene. Several volcanic centers are Cusingle bondAu mineralized including the world-class Ladolam Au deposit and Conical Seamount south of Lihir. The latter has been recognized as a juvenile analogue to the Ladolam deposit located on-shore. Whereas the mineralization at Conical Seamount is reasonably well studied, the specific magmatic processes that promote epithermal mineralization at this seamount but not at others are poorly understood. Here, we present new petrological and geochemical data from Conical Seamount, and compare them with those from the barren (unmineralized) Edison, Tubaf and New World seamounts nearby. We focus on whole rock compositions and major and trace element analysis of melt inclusions and minerals including clinopyroxene, sulfide and magnetite. We combine our observations with modelled constraints on mantle source composition and partial melting as well as magma evolution. A first-stage melting leaves a residual mantle source enriched in Au. Second-stage melting of a previously subduction-metasomatized mantle generally promotes the transfer and concentration of metals and volatiles in the ascending melts. These magmas are unlikely to control ore formation as all seamounts show evidence for similar mantle sources and parental melt composition. However, the presence of a shallow crustal magma chamber is unique to Conical Seamount. It is characterized by frequent melt replenishments and extensive magma fractionation leading to sulfide and magmatic volatile saturation. These specific magma chamber processes lead to the pre-enrichment of the magma in chalcophile elements including Au, while sulfide saturation coeval with magmatic volatile exsolution provide the way for an effective Au transfer from the magmatic to the epithermal system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-07-01
    Description: Marginal seas influenced by large rivers are characterized by complex hydrodynamic and organic matter cycling processes. However, the impacts of hydrodynamics on the composition and reactivity of particulate organic matter (POM) remain unclear. Here we conducted a comprehensive study on the bulk, molecular and biological properties of suspended POM in the Changjiang Estuary and adjacent area subjected to strong currents, eddies as well as typhoons during spring and autumn. D/L‐enantiomers of particulate amino acids (PAA) were analyzed to evaluate the bioreactivity of POM and quantify bacterial‐derived organic carbon. We found that POM bioavailability as indicated by carbon‐normalized yields of PAA (PAA‐C%) reflected the ecosystem productivity. Relatively high PAA‐C% values (20−35%) were observed in productive areas influenced by Changjiang River plume, cyclonic eddies and typhoons, likely related to the enhanced nutrient availability arising from hydrodynamic processes. In contrast, the oligotrophic Taiwan Warm Current‐influenced regions featured relatively low POM bioavailability (PAA‐C% 〈 10%) despite typhoons facilitating water mixing. The PAA‐C% values showed a significant positive correlation with extracellular enzyme activity, indicating that bioavailable POM can rapidly stimulate heterotrophic transformation. Hot spots of elevated bioavailable POM showed high contributions of bacterial organic carbon. A large portion (∼2/3) of bacterial organic carbon was present in the form of bacterial detritus, suggesting that patches of these biological hot spots represent important sites of carbon sequestration. Together, our findings indicate that fresh POM production is largely controlled by nutrient supply driven by hydrodynamic processes, with important implications for carbon sequestration in the dynamic ocean margins. Plain Language Summary Marginal seas are subject to complex hydrodynamic processes and play an important role in carbon sequestration. Disentangling the linkages between hydrodynamics and organic carbon reactivity and composition is crucial to understanding the regional carbon cycle. Here we collected suspended particulate organic matter (POM) in the Changjiang Estuary and adjacent coastal areas. Based on the biomarker D/L‐amino acids, we assessed the bioavailability of POM and quantified the organic carbon originating from bacteria. We found that high bioactivity of POM occurred in productive Changjiang River plume, cyclonic eddy, and typhoon influenced areas. These hydrodynamic processes appear to increase nutrient availability, therefore promoting phytoplankton growth. Bioavailable POM can rapidly stimulate heterotrophic activity and facilitate the transformation of algal‐derived organic carbon to bacterial detritus, thus contributing to carbon sequestration. Our findings suggest that the production of bioavailable POM is largely controlled by hydrodynamically driven nutrient supply. Key Points We use D/L‐amino acids to assess the bioreactivity and bacterial origins of particulate organic matter (POM) in the dynamic Changjiang Estuary and adjacent area High bioavailability of POM occurs in productive regions affected by Changjiang River plume, cyclonic eddies and typhoons Hot spots of bioavailable POM represent important sites for carbon sequestration
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    Publication Date: 2024-07-01
    Description: The Arctic Ocean plays an important role in the regulation of the earth's climate system, for instance by storing large amounts of carbon dioxide within its interior. It also plays a critical role in the global thermohaline circulation, transporting water entering from the Atlantic Ocean to the interior and initializing the southward transport of deep waters. Currently, the Arctic Ocean is undergoing rapid changes due to climate warming. The resulting consequences on ventilation patterns, however, are scarce. In this study we present transient tracer (CFC-12 and SF6) measurements, in conjunction with dissolved oxygen concentrations, to asses ventilation and circulation changes in the Eurasian Arctic Ocean over three decades (1991–2021). We constrained transit time distributions of water masses in different areas and quantified temporal variability in ventilation. Specifically, mean ages of intermediate water layers in the Eurasian Arctic Ocean were evaluated, revealing a decrease in ventilation in each of the designated areas from 2005 to 2021. This intermediate layer (250–1,500 m) is dominated by Atlantic Water entering from the Nordic Seas. We also identify a variability in ventilation during the observation period in most regions, as the data from 1991 shows mean ages comparable to those from 2021. Only in the northern Amundsen Basin, where the Arctic Ocean Boundary Current is present at intermediate depths, the ventilation in 1991 is congruent to the one in 2005, increasing thereafter until 2021. This suggests a reduced ventilation and decrease in the strength of the Boundary Current during the last 16 years. Key Points Temporal variability of ventilation in the Eurasian Arctic Ocean during the past 30 years is estimated by observations of transient tracers We found a slow down of the ventilation between 2005 and 2021 in the intermediate waters Evidence of multidecadal variability of ventilation in the intermediate waters of the Eurasian Arctic Ocean is present Plain Language Summary The Eurasian Arctic Ocean, the region of the Arctic Ocean connected to the European and Asian continents, is an important pathway for recently ventilated water from the Nordic Seas. These waters are exported back to the North Atlantic following their travel through the Arctic Ocean. Ventilation describes the process of surface waters being transported into the interior ocean due to increasing density, which affects the underlying water masses. In this study we investigate how the ventilation patterns have evolved in the Eurasian Arctic Ocean over the past three decades, using transient tracer (CFC-12 and SF6) measurements. We observed a significant change in the intermediate layer (250–1,500 m) with older waters found in measurements in 1991 and 2021 compared to 2005 and 2015. Moreover, our data suggest a slowdown in ventilation throughout the three decades in the northern Amundsen Basin, implying a decrease in the circulation time-scale of the Arctic Ocean Boundary Current over the past 16 years. This has potentially important implications for the transport of, for example, heat, salt or oxygen from the Atlantic Ocean around the Arctic Ocean, and back.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...