ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05.04. Instrumentation and techniques of general interest  (2)
  • Spectral analysis
  • Textbook of geophysics
  • Elsevier  (4)
  • 2020-2023  (3)
  • 1970-1974  (1)
  • 1
    Publication Date: 2022-10-28
    Description: A representative fluid sampling of surface geothermal manifestations and its analytical data quality assurance and quality control (QA/QC) are challenging aspects of understanding the geothermal reservoir processes. To achieve these goals, an interlaboratory test for the chemical analyses of ten water samples: one synthetic water, two lake waters (i.e., duplicated), one stream water, and six water samples from two geothermal wells of Los Azufres Geothermal field (LAGF), Michoacan, Mexico, was conducted. The geothermal wells were sampled at four points: (1) total discharge of condensed fluid at the wellhead, (2) separate liquid condensed in the well separator, (3) flushed liquid at the weir box, and (4) separated vapor condensed at the well-separator (data taken from Verma et al., 2022). Sixteen laboratories from ten countries reported their results. The pH, electrical conductivity, Ca2+, Li+, SO4 2 B, and Si-total measurements were 8.35 ± 0.04, 12.25 ± 0.53 mS/cm, 25 ± 1 mg/l, 18 ± 1 mg/l, 569 ± 33 mg/l, 320 ± 21 mg/l, and 20.5 ± 0.7 mg/l, which are close to the conventional true values, 8.40, 12.31 mS/cm, 23 mg/l, 19 mg/l, 647 mg/l, 330 mg/l, and 20.0 mg/l, respectively. Analytical errors for major ions, Na+, Cl
    Description: Published
    Description: 105477
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Geothermal water ; Inter-laboratory test ; Geothermal system ; Los Azufres ; Geochemical modeling ; Uncertainty propagation ; NIST Uncertainty machine ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-15
    Description: Innovations in virtual reality (VR) technology have led to exciting possibilities in teaching earth sciences, allowing students to experience complex geological sites that, due to cost and logistical reasons, they would not normally be able to experience. The need for high quality online digital learning resources and blended learning was brought to the forefront during the SARS-CoV-2 pandemic, as courses with a traditional physical field work component were forced to move online and provide alternatives to students. While it is unlikely that virtual field trips (VFT) would be accepted by students as a replacement of real-world fieldwork moving out of the pandemic, research shows promise that using IVR experiences can lead to enhanced learning outcomes in geosciences, warranting its inclusion on the curricula. This paper presents the outputs of a project to improve student learning in complex geological environments using VR. Here we outline a workflow that was developed to collect high resolution imagery using remote sensing to create digital outcrop models (DOM) of complex geological sites. Using this framework, this paper will then explore the use of VR for an investigation of the Husavik Triple Junction, a complex structural site in northern Iceland, explaining how the drone data was converted to a 3D DOM and demonstrating how VR can be used to simulate real world field mapping. Finally, we describe how these IVR activities have been integrated into taught modules at postgraduate level and discuss how the use of IVR experiences can complement existing geoscience curriculum design.
    Description: Erasmus+ Key Action 2 funded project 2017-1-UK01-KA203-036719 3DTeLC-Bringing the 3Dworld into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments coordinated by M. Whitworth. (https://ec.europa.eu/programmes/erasmus-plus/projects/eplus-projectdetails/#project/2017-1-UK01-KA203-036719and http://www.3dtelc.com) and the MIUR Project ACPR15T4_00098–Argo3D, coordinated by A. Tibaldi (http://argo3d.unimib.it/).
    Description: Published
    Description: 104681
    Description: 1TM. Formazione
    Description: JCR Journal
    Keywords: Virtual reality ; Geosciences ; Teaching ; Fieldwork ; Structural geology ; Digital outcrop model ; 05.04. Instrumentation and techniques of general interest ; 04.04. Geology ; 05.03. Educational, History of Science, Public Issues
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-29
    Description: In this work, we propose a wavelet-based filtering for soil CO2 flux time series. The filter relies on the detection of the periodic components achieved by means of the long-term time-frequency characterization of the time series. For this purpose, we exploited the vast data set coming from the monitoring network installed at Mt. Etna volcano (Italy). The network provides hourly measure of CO2 flux together with the measure of the climatic variables. These data allow to investigate the relationships between CO2 time series and the potentially influencing meteorological factors. This has been assessed calculating the wavelet coherence between CO2 time series against air temperatures, atmospheric pressure, and relative humidity in all the sites where these information were available. Results highlight the occurrence of marked cycles at about ∼1 year for the most of the sites while shorter cycles occur only at some sites. From these cycles a periodic signal can be calculated, and therefore opportunely removed from the time CO2 series to enhance the volcano-related anomalies. We found also common cycles among CO2 and the climatic variables, which synchronicity is constant over time but it is site-specific. Starting from this consideration, we calculated a reference signal for CO2 combining analytically the temperature, the pressure, and the humidity cycles: this model of the climatic effect has been used to predict the seasonal trend of the CO2 output.
    Description: Published
    Description: 107421
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: Soil CO2 ; Continuous wavelet transform ; Spectral analysis ; Etna
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Amsterdam, Elsevier, vol. 8, pp. 415, (ISBN 0-471-95596-5)
    Publication Date: 1974
    Keywords: Textbook of geophysics ; Data analysis / ~ processing ; Spectral analysis ; Spectrum ; Seismology ; Seismics (controlled source seismology) ; Bath
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...