ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2,442)
  • GEOPHYSICS  (1,368)
  • METEOROLOGY AND CLIMATOLOGY  (1,074)
  • Analytical Chemistry and Spectroscopy
  • Humans
  • 1990-1994  (2,442)
  • 1993  (1,057)
  • 1990  (1,385)
Collection
Source
Years
  • 1990-1994  (2,442)
Year
  • 1
    Publication Date: 2019-09-05
    Description: This document contains a description of a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-look windshear detection equipment. The database contains high resolution, three dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies which have been generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases represent a wide spectrum of windshear events. General descriptions and figures from each of the case studies are included, as well as equations for F-factor, radar-reflectivity factor, and rainfall rate. The document also describes scenarios and paths through the data sets, jointly developed by NASA and the FAA, to meet FAA certification testing objectives. Instructions for reading and verifying the data from tape are included.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TM-109012 , NAS 1.15:109012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,223-19,234
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: We present a simple analytic model of the interaction of cold convective downwelling currents with an endothermic phase change. The model describes the ponding and lateral spreading of downflows along the phase transition interface. A simple comparison of the vertical forces on the ponding material provides a necessary condition for a downflow to penetrate the phase boundary. This condition is fundamentally dependent on the geometry of the downflow. For planar downwellings, the model predicts a minimum ponding time before the structure can penetrate the phase boundary. For columnar (axisymmetric) downflows, there is no minimum time of spreading required before penetration can proceed. The model thus provides an explanation for the observation that in numerical models of three-dimensional convection with an endothermic phase change, cylindrical downflows penetrate the phase interface while planar ones do not. Since descending slabs in the Earth's mantle display a wide spectrum of geometries between planar and cylindrical (given various trench curvatures, as well as intersections of two or more subduction zones), this phenomenon may explain, in part, why some slabs appear to extend into the lower mantle while others are deflected at the 660 km discontinuity.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 23; p. 2599-2602
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: Rawinsonde data from tropical Pacific stations were examined for westward-propagating 3-6-day meridional wind oscillations in the troposphere and lower stratosphere, 1973-1992. Four types were identified from cross-spectrum and principal component analysis. (1) The dominant oscillation, near 250 mb, had a period slightly greater than 5 days, zonal wavenumber 4-6, and modified Rossby-gravity structure near the date line. (2) In the western Pacific lower troposphere there was broadband activity with short zonal scale, coupled to upper-tropospheric waves in NH summer. (3) In the central Pacific, during NH autumn, there was a well-defined approximately 4 1/2-day oscillation with maximum amplitude in the lower troposphere and baroclinic phase tilt above. The vertical structure suggested coupling to deep tropical convection; this interpretation was supported by correlation of meridional wind with antisymmetric outgoing longwave radiation. (4) In the stratosphere, Rossby-gravity waves had periods less than or equal to 4 days and zonal wavenumber 3-4. Unlike tropospheric waves, these disturbances were coherent in a shallow layer, largest in west phase of quasi-biennial oscillation (QBO) and annual cycle (NH winter-spring).
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 50; 19; p. 3292-3307
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: The buried Chicxulub impact structure in Mexico, which is linked to the Cretaceous-Tertiary (K-T) boundary layer, may be significantly larger than previously suspected. Reprocessed gravity data over Northern Yucatan reveal three major rings and parts of a fourth ring, spaced similarly to those observed at multiring impact basins on other planets. The outer ring, probably corresponding to the basin's topographic rim, is almost 300 kilometers in diameter, indicating that Chicxulub may be one of the largest impact structures produced in the inner solar system since the period of early bombardment ended nearly 4 billion years ago.
    Keywords: GEOPHYSICS
    Type: Science (ISSN 0036-8075); 261; 5128; p. 1564-1567.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: Three of four Plinian eruptions from Ksudach Volcano are among the four largest explosive eruptions in southern Kamchatka during the past 2000 years. The earliest of the eruptions was voluminous and was accompanied by an ignimbrite and the fifth and most recent C~ddera collapse event at Ksudach. The isopach pattern is consistent with a column height of 23 km. The three more recent and smaller eruptions were from the Shtyubel' Cone, within the fifth caldera. Using isopach and grain size isopleth patterns, column heights ranged from 〉10 to 22 kin. Although the oldest eruption may have produced a large acidity peak in the Greenland ice, the three Shtyubel' events may not be related to major acid deposition. Thus it is possible that few if any of the uncorrelated acidity peaks of the past 2000 years in Greenland ice cores result from eruptions in southern Kamchatka.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 17; p. 1815-1818.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: We estimate ion heating in the topside ionosphere directly over thunderstorm cells. The primary heating is due to lower hybrid waves excited through linear mode coupling as intense electromagnetic (EM) whistler mode radiation from lightning is scattered from small scale (2 - 20 m) magnetic-field-aligned plasma density irregularities in the topside ionosphere. For typical radiated EM fields, we find that suprathermal H+ ions in the 6 eV and greater energy range can be heated by 20 to 40 eV as a result of a single lightning discharge. We also show how the number density of 6 eV and greater H(+) ions is enhanced by preheating resulting from the absorption of proton whistlers in the 500-1000 km altitude range. For lightning discharge rates of one or more per second over a 10 exp 4 sq km area, our model predicts a total energy gain for the H(+) ions of 400 eV to 2 KeV and a perpendicular ion flux of about 10 exp 5 to 10 exp 6/sq cm sec. These fluxes should be observable on low altitude spacecraft using presently available instrumentation.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8534); 20; 18; p. 1991-1994.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: New, 3D ray tracing of Pc 3 compressional waves from the magnetosheath reveals that the magnetosphere can present a major propagation barrier to the penetration of these waves to the plasmasphere. This barrier is the ion-ion cutoff between the He(+) and O(+) gyroresonances. As a result of the frequency-dependent location of this cutoff, the magnetosphere behaves like a filter for Pc 3 compressional waves, and only low-frequency components of Pc 3 compressional waves can penetrate to inner magnetosphere. Results are in agreement with previous satellite observations. This 'filter action' strongly depends on the relative concentration of He(+) and O(+) and is therefore sensitive to solar and magnetic activity. Ray-tracing results are based on a cold plasma dispersion relation, a semiempirical model of plasma density, and the Mead-Fairfield (1975) magnetic field model.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A9; p. 15,403-15,410.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.
    Keywords: GEOPHYSICS
    Type: Science (ISSN 0036-8075); 261; 5125; p. 1146-1149.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; B9; p. 16,149-16,166.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...