ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Chemical Engineering  (159)
  • NAVIGATION  (55)
  • AERODYNAMICS  (30)
  • Fluid Mechanics and Heat Transfer  (25)
  • BIOTECHNOLOGY
  • SPACE SCIENCES
  • 2005-2009
  • 1960-1964  (275)
  • 1935-1939
  • 1960  (275)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 2005-2009
  • 1960-1964  (275)
  • 1935-1939
Jahr
  • 1
    Publikationsdatum: 2019-08-17
    Beschreibung: Photographs are presented of various models coated with fluorescent oil to show evidence of surface vortices at a Mach number of 3.03. Vortex formation was evidently present on models with forward-facing steps, rearward-facing steps, wires, discrete surface particles, or unswept flat surfaces with sharp leading edges. Some photographs are also presented for the models coated with a sublimation material which clearly indicates the location of boundary-layer transition; however, it does not show the vortices as clearly as the fluorescent oil. The study was made on the models at an angle of attack of 0 deg at unit Reynolds numbers of 7.7 and 10.7 million per foot. The spacing of the vortices as indicated by the flow studies on the unswept model was smaller at the higher Reynolds number in accordance with Gortler's theory. The flow studies also indicated that stable surface vortices produced by either steps or surface roughness persisted over model areas known to have turbulent boundary layers.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-328
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-17
    Beschreibung: An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure gradient, effects of sweep in causing premature transition are generally first encountered on the lower surfaces of wings operating at positive angles of attack.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-338
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-08-17
    Beschreibung: A configuration of a wing segment having constant chord thickness, 0 deg. sweep, a porous steel semicircular leading edge, and solid Inconel surfaces was tested in a Mach number 2.0 ethlyene-heated high-temperature air jet. Measurements were made of the wing surface temperatures at chordwise stations for several rates of helium flow through the porous leading edge. The investigation was conducted at stagnation temperatures ranging from 500 F to 2,400 F, at Reynolds numbers per foot ranging from 0.3 x 10(exp 7) to 1.2 x 10(exp 7), and at angles of attack of 0, +/- 5, and +/- 15 deg. The results indicated that the reduction of wing surface temperatures with respect to their values for no coolant flow, depended on the helium coolant flow rates and the distance behind the area of injection. The results were correlated in terms of the wall cooling parameter and the coolant flow-rate parameter, where the nondimensional flow rate was referenced to the cooled area up to the downstream position. For the same coolant flow rate, lower surface temperatures are achieved with a porous-wall cooling system. However, since flow-rate requirements decrease with increasing allowable surface temperatures, the higher allowable wall temperatures of the solid wall as compared to the structurally weaker porous wall- sharply reduce the flow-rate requirements of a downstream cooling system. Thus, for certain flight conditions it is possible to compensate for the lower efficiency of the downstream or solid-wall cooling system. For example, a downstream cooling system using solid walls that must be maintained at 1,800 F would require less coolant for Mach numbers up to 5.5 than would a porous-wall cooling system for which the walls must be maintained at temperatures less than or equal to 9000 F.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TM-X-235
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-08-16
    Beschreibung: A study was made to determine the effect of coolant injection angularity on gaseous film-cooling effectiveness. In the correlation of experimental data an effective injection angle was defined by a vector summation of the coolant and mainstream gas flows. The cosine of this angle was used as a parameter to empirically develop a corrective term to qualify a correlating equation presented in Technical Note D-130 that was limited to tangential injection of the coolant. Data were also obtained for coolant injection through rows of holes normal to the test plate. The slot correlating equation was adapted to fit these data by the definition of an effective slot height. An additional corrective term was then determined to correlate these data.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-299 , E-689
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-16
    Beschreibung: Measurements of the time-averaged induced velocities were obtained for rotor tip speeds as great as 1,100 feet per second (tip Mach number of 0.98) and measurements of the instantaneous induced velocities were obtained for rotor tip speeds as great as 900 feet per second. The results indicate that the small effects on the wake with increasing Mach number are primarily due to the changes in rotor-load distribution resulting from changes in Mach number rather than to compressibility effects on the wake itself. No effect of tip Mach number on the instantaneous velocities was observed. Under conditions for which the blade tip was operated at negative pitch angles, an erratic circulatory flow was observed.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-393 , L-836
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-08-16
    Beschreibung: The spatial characteristics of a spray formed by two impinging water jets in quiescent air were studied over a range of nominal jet velocities of 30 to 74 feet per second. The total included angle between the 0.089-inch jets was 90 deg. The jet velocity, spray velocity, disappearance of the ligaments just before drop formation, mass distribution, and size and position of the largest drops were measured in a circumferential survey around the point of jet impingement. Photographic techniques were used in the evaluations. The distance from the point of jet impingement to ligament breakup into drops was about 4 inches on the spray axis and about 1.3 inches in the radial position +/-90 deg from the axis. The distance tended to increase slightly with increase in jet velocity. The spray velocity varied from about 99 to about 72 percent of the jet velocity for a change in circumferential position from the spray axis to the +/-80 deg positions. The percentages tended to increase slightly with an increase in jet velocity. Fifty percent of the mass was distributed about the spray axis in an included angle of slightly less than 40 deg. The effect of jet velocity was small. The largest observed drops (2260-micron or 0.090-in. diam.) were found on and about the spray axis. The size of the largest drops decreased for an increase in radial angular position, being about 1860 microns (0.074 in.) at the +/-90 deg positions. The largest drop sizes tended to decrease for an increase in jet velocity, although the velocity effect was small. A drop-size distribution analysis indicated a mass mean drop size equal to 54 percent of an extrapolated maximum drop size.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-301 , E-419
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-08-16
    Beschreibung: The results are reported of hot-wire anemometer measurements of the fluctuating longitudinal component of the turbulent velocities in the mean flow downstream of screens in an air jet. These measurements have been analyzed by well-established techniques to give the influence of tile screen mesh size on the turbulent intensity, scale, and the power-spectral-density. The results show a linear dependence of the intensity upon the screen mesh size for locations within the central core of the air jet. The spectral-density curves show that the screens redistribute the turbulent energy from the low frequencies (〈1000 cps) to the high frequencies (〉1000 cps). The effects of the screens are overwhelmed in the mixing region of the jet flow by the turbulence levels existing there. The large pressure drops occurring across the screens reduce the velocity of the jet as compared to the jet without screens by approximately one-third for the velocity and range of mesh sizes investigated and reported in this report. The turbulence scale is a linear function of distance from the nozzle exit and is somewhat greater than comparable jets without screens.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-297 , E-798
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-08-16
    Beschreibung: Measurements of the location of boundary-layer transition and the local heat transfer have been made on 2-inch-diameter hemispheres in the Langley gas dynamics laboratory at a Mach number of 4.95, a Reynolds number per foot of 73.2 x 10(exp 6), and a stagnation temperature of approximately 400 F. The transient-heating thin-skin calorimeter technique was used, and the initial values of the wall-to-stream stagnation- temperature ratios were 0.16 (cold-model tests) and 0.65 (hot-model test). During two of the four cold tests, the boundary-layer flow changed from turbulent to laminar over large regions of the hemisphere as the model heated. On the basis of a detailed consideration of the magnitude of roughness possibly present during these two cold tests, it appears that this destabilizing effect of low wall temperatures (cooling) was not caused by roughness as a dominant influence. This idea of a decrease in boundary-layer stability with cooling has been previously suggested. (See, for example, NASA Memorandum 10-8-58E.) For the laminar data obtained during the early part of the hot test, the correlation of the local-heating data with laminar theory was excellent.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-391 , L-752
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-16
    Beschreibung: The problem of noise suppression of turbojet engines has shown a need for turbulence data within the flow field of various types of nozzles used in ad hoc investigations of the sound power. The result of turbulence studies in a nozzle configuration of four parallel rectangular slots is presented in this report with special attention to the effect of the spacing of the nozzles on the intensity of turbulence, scale of turbulence, spectrum of turbulence, and the mean stream velocity. Taylor's hypothesis, which describes the convection of the turbulence eddies, was tested and found correct within experimental error and certain experimental and theoretical limitations. The convection of the pressure patterns was also investigated, and the value of the convection velocity was found to be about 0.43 times the central core velocity of the jets. The effect of the spacing-to-width ratio of the nozzles upon the turbulence intensity, the scale of turbulence, and the spectral distribution of the noise was found in general to produce a maximum change for spacing-to-width ratios of 1.5 to 2.0. These changes may be the cause of the reduction in sound power reported for similar full-scale nozzles and test conditions under actual (static) engine operation. A noise reduction parameter is defined from Lighthill's theory which gives qualitative agreement with experiments which show the noise reduction is greatest for spacing-to-width ratios of 1.5 to 2.0.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-294 , E-384
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-08-16
    Beschreibung: A full-scale wind-tunnel test was conducted of two boundary-layer-control applications to a 44-foot diameter helicopter rotor. Blowing from a nozzle near the leading edge of the blades delayed retreating blade stall. Results also indicated that delay of retreating blade stall could be obtained by cyclic blowing with a lower flow rate than that required for continuous blowing. It was found that blowing applied through a nozzle at mid-chord had no effect on retreating blade stall.
    Schlagwort(e): Fluid Mechanics and Heat Transfer
    Materialart: NASA-TN-D-335 , A-380
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...