ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics
  • INSTRUMENTATION AND PHOTOGRAPHY
  • 1975-1979
  • 1950-1954  (5)
  • 1952  (5)
  • 1
    Publication Date: 2019-07-12
    Description: The performance of a 16-stage axial-flow compressor, in which the mean-radius solidity was reduced from 1.28 to 1.02 in the fourteenth through sixteenth stage rotors was determined. The performance of this modification was compared with that of the compressor with original rotors. The reduced solidity resulted in slightly improved performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E52D22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TR-1067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Three multicylinder cloud meters, fundamentally similar but differing in important details, were compared in use at the Mount Washington Observatory. Determinations of liquid water content were found to agree within the limits of the probable error, but the two instruments designed by the National Advisory Committee for Aeronautics indicated larger drop sizes than did the Observatory's instrument, apparently because of spurious ice catch on the rather rough surface of the larger cylinders. Comparisons of drop-size distribution were largely indeterminate., In a critique of the method, the probable error of determination of liquid water content was found to be +/-8 percent; of drop size, +/-6 percent; and of drop-size distribution, about +/-0.7 unit of the modulus of distribution. Of the systematic errors, run-off of unfrozen water is most important, blow-off and erosion seldom being hampering. Revision of collection-efficiency computations for cylinders in clouds with distributed drop sizes was found necessary and also revision of one of the correction-factor graphs heretofore used. The assumption of constant ice density in deriving cylinder size was found to be permissible for cylinders 1 inch or more in diameter.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NACA-TN-2708
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NACA-TN-2615
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well as those of other investigators, were used to isolate the influence of ratios of thread height to width, thread spacing to width, and the conventional roughness ratio on the friction coefficient. A fair correlation of the friction data was obtained for each tube with heat addition when the friction coefficient and Reynolds number were defined on the basis of film properties; however, the data for each tube retained the curve characteristic of that particular roughness. The friction data for all the rough tubes could be represented by a single line for the complete turbulence region by incorporating a roughness parameter in the film correlation. No correlation was obtained for the region of incomplete turbulence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E52D17 , E-2482
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...