ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data
  • Other Sources  (30)
  • Aircraft Design, Testing and Performance  (19)
  • Aerodynamics  (11)
  • 1980-1984
  • 1950-1954  (30)
  • 1950  (30)
Collection
  • Data
  • Other Sources  (30)
Years
  • 1980-1984
  • 1950-1954  (30)
Year
  • 1
    Publication Date: 2019-08-13
    Description: The study of the hydrodynamic properties of planing bottom of flying boats and seaplane floats is at the present time based exclusively on the curves of towing tests conducted in tanks. In order to provide a rational basis for the test procedure in tanks and practical design data, a theoretical study must be made of the flow at the step and relations derived that show not only qualitatively but quantitatively the inter-relations of the various factors involved. The general solution of the problem of the development of hydrodynamic forces during the motion of the seaplane float or flying boat is very difficult for it is necessary to give a three-dimensional solution, which does not always permit reducing the analysis to the form of workable computation formulas. On the other had, the problem is complicated by the fact that the object of the analysis is concerned with two fluid mediums, namely, air and water, which have a surface of density discontinuity between them. The theoretical and experimental investigations on the hydrodynamics of a ship cannot be completely carried over to the design of floats and flying-boat hulls, because of the difference in the shape of the contour lines of the bodies, and, because of the entirely different flow conditions from the hydrodynamic viewpoint.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1246 , Materialy po Gidrodinamicheskomu Raschetu Glisserov i Gidrosamoletov; 1-39; CAHI-Rept-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: An investigate ion was made of the disturbed motion of a gas for the harmonic vibrations of a thin slightly cambered wing of finite span moving forward with supersonic velocity. This problem was considered by E. A. Krasilshchikova who applied the method of Fourier series and obtained a solution of the space problem for the condition that the Mach cones drawn through the leading edge of the wing intersect the wing or are tangent to it. In this paper, a different method of solution is given, which is free from the previously mentioned condition. In particular, the vibrations of a triangular wing lying within the Mach cone are considered.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1257 , Prikladnaya Matematika i Mekhanika; 11; 371-376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Free-flight tests have been made to determine the zero-lift drag of several configurations of the XAAM-N-2 pilotless aircraft. Base-pressure measurements were also obtained for some of the configurations. The results show that increasing the wing-thickness ratio from 4 to 6 percent increased the wing drag by about 100 percent at M = 1.3 and by about 30 percent at M = 1.8. Increasing the nose fineness ratio from 5.00 to 6.25 reduced the drag coefficient of the wingless models a maximum of about 0.030 (10 percent) at M = 2.0. A corresponding change in nose shape for the winged models decreased the drag coefficient by about 0.05 in the Mach number range from 1.1 to 1.4; at Mach numbers greater than 1.6 no measurable reduction in drag coefficient was obtained. The drag of the present Sparrow fuselage is less than that of a parabolic fuselage which could contain the same equipment.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50C16a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A flight test was made a t high subsonic, transonic, and supersonic speeds and at high Reynolds numbers to determine the zero-lift drag of a 1/14-scale model of the Northrop MX-775B pilotless aircraft with small small body. The triangular wing of the model had 67.5 deg leading-edge sweep and 15 deg. trailing-edge sweep, The wing airfoil sections were modified NACA 0004 sections. The drag coefficient based on total wing area was 0.0107 at Mach number 1.60. At transonic speeds the maximum drag coefficient was 0.0125. The force-break Mach number was 0,98.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/30 - scale model of the Grumman XFlOF-1 airplane to determine its spin and recovery characteristics. The investigation included erect and inverted spins for both the straight-wing and swept-wing configurations. Tests to determine the optimum size spin-recovery parachutes and the rudder forces required for recovery were also made. The results indicated that in the straight-wing configuration, satisfactory recoveries of the airplane will be obtained from erect and inverted spins by rudder reversal alone. In the swept-wing configuration recoveries will be unsatisfactory from erect spins. Unsweeping the wings during the spin and reversal of the rudder, however, will lead to eventual recovery. The test results also indicated that, if existing small ailerons are made deflectable through large angles, satisfactory recoveries will be obtained from erect spins in the swept-wing configuration by simultaneous movement of the rudder to against the spin and movement of the ailerons to with the spin. Normal-size ailerons deflected through a normal range would also be effective. Satisfactory recoveries by rudder reversal will be obtained from inverted spins in the swept-wing configuration. In the straight-wing configuration a 14.2-foot tail parachute or a 5.0-foot wing-tip parachute opened on the outer wing tip will effect satisfactory recovery of the airplane by parachute action alone; a 30.0-foot tail parachute or a 10.0-foot wing-tip parachute will be required for the swept-wing configuration. The forces required to fully reverse the rudder should be within the capabilities of the pilot.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50L14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Dynamic--response measurements for various conditions of displacement and rate signal input, sensitivity setting, and simulated hinge moment were made of the three control-surface servo systems of an NAES-equipped remote-controlled airplane while on the ground. The basic components of the servo systems are those of the General Electric Company type G-1 autopilot using electrical signal. sources, solenoid-operated valves, and hydraulic pistons. The test procedures and difficulties are discussed, Both frequency and transient-response data, are presented and comparisons are made. The constants describing the servo system, the undamped natural frequency, and the damping ratio, are determined by several methods. The response of the system with the addition of airframe rate signal is calculated. The transfer function of the elevator surface, linkage, and cable system is obtained. The agreement between various methods of measurement and calculation is considered very good. The data are complete enough and in such form that they may be used directly with the frequency-response data of an airplane to predict the stability of the autopilot-airplane combination.
    Keywords: Aerodynamics
    Type: NACA-RM-SA50J05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: An investigation was conducted with a single combustor from a J47 turbojet engine using weathered aviation gasoline and several spark-plug modifications to determine altitude ignition, acceleration, and steady state operating characteristics. Satisfactory ignition was obtained with two modifications of the original opposite-polarity spark plug up to and including an altitude of 40,003 feet at conditions simulating equilibrium windmilling of the engine at a flight speed of 400 miles per hour. At a simulated altitude of 30,000 feet, satisfactory ignition was obtained over a range of simulated engine speeds. No significant effect of fuel temperature on ignition limits was observed over a range of fuel temperatures from 80 deg to -52 deg F. At an altitude of 30,000 feet, the excess temperature rise available for acceleration at low engine speeds was limited by the ability of the combustor to produce temperature rise, whereas at high engine speeds the maximum allowable turbine-inlet temperature became the restricting factor. Altitude operational limits increased from about 51,500 feet at 55 percent of rated engine speed to about 64,500 feet at 85 percent of rated speed. Combustion efficiencies varied from 59.0 to 92.6 percent over the range investigated and decreased with a decrease in engine speed and with an increase in altitude; higher efficiencies would have been obtained if lower altitudes had been investigated. Comparisons were made of the combustion efficiencies of weathered aviation gasoline and MIL-F-5616 fuel at altitudes of 30,000 and 40,000 feet. Combustion efficiencies obtained with MIL-F-5616 fuel were 8 percent higher at rated engine speed and 14 percent lower at 55 percent of rated speed than those obtained with weathered aviation gasoline.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SE50J12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.
    Keywords: Aerodynamics
    Type: NACA-RM-SE50J11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: A rocket-propelled model of the Mx-656 configuration has been flown through the Mach number range from 0.65 to 1.25. An analysis of the response of the model to rapid deflections of the horizontal tail gave information on the lift, drag, longitudinal stability and control, and longitudinal-trim change. The lift-coefficient range covered by the test was from -0.2 to 0,3 throughout most of the Mach number range, The model was statically and dynamically stable throughout the lift-coefficient and Mach number range of the test. At subsonic speeds the aerodynamic center moved f o m r d with increasing lift coefficient. The most forward position of the aerodynamic center was about 12,5 percent of the mean aerodynamic chord at a small positive lift coefficient and at a Mach number of about 0.84. A t supersonic speeds the aerodynamic center was well aft, varying from 33 to 39 percent of the mean aerodynamic chord at Mach numbers of 1.0 and 1.25, respectively. Transonic-trim change, as measured by the change in trim lift coefficient with Mach number at a constant t a i l setting, was of small magnitude (about 0.1 lift coefficient for zero tail setting). The zero-lift/drag coefficient increased about 0.042 in the region between a Mach number of 0.9 and 1.1
    Keywords: Aerodynamics
    Type: NACA-RM-SL50J03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: A wind-tunnel investigation has been conducted to determine the stability and control characteristics of a full-size model of the Hughes MX-904 missile. Aerodynamic characteristics of the complete model through moderate ranges of angles of attack and yaw, with an additional test made through an angle of attack of 180 degrees, are presented. The effects of horizontal tail deflection are also included.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL9D28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...