ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (627)
  • Spanish  (2)
  • 2020-2024  (9)
  • 2005-2009  (629)
  • 2007  (629)
Collection
Language
Year
  • 1
    Publication Date: 2024-04-19
    Description: This paper presents our experiences in porting the Sloan Digital Sky Survey(SDSS)/ SkyServer to the state-of- the-art open source database system MonetDB/SQL. SDSS acts as a well-documented benchmark for scientific database management. We have achieved a fully functional prototype for the personal SkyServer, to be downloaded from our site. The lessons learned are 1) the column store approach of MonetDB demonstrates a great potential in the world of scientific databases. However, the application also challenged the functionality of our implementation and revealed that a fully operational SQL environment is needed, e.g. including persistent stored modules; 2) the initial performance is competitive to the reference platform, MS SQL Server 2005, and 3) the analysis of SDSS query traces hints at several techniques to boost performance by utilizing repetitive behavior and zoom-in/zoom-out access patterns, that are currently not captured by the system.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-28
    Description: Dieser Artikel diskutiert den Charakter von Pollentypen. Wir argumentieren, dass Pollentypen und Pflanzentaxa komplett unterschiedliche Entitäten (morphologische bzw. taxonomische) sind, und deswegen unterschiedlich behandelt und dargestellt werden sollten. Allgemeine Probleme der konventionellen Nomenklatur von Pollentypen werden anhand von Beispielen aus der europäischen palynologischen Praxis illustriert. Wir plädieren für Deutlichkeit in der Nomenklatur von Pollentypen und für die wissenschaftliche Freiheit, ‘unkonventionelle‘ Methoden zu benutzen, um Verwirrung zu vermeiden.
    Description: research
    Keywords: ddc:551.7 ; palynological methods ; pollen morphology ; pollen type nomenclature
    Language: English
    Type: doc-type:article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Malden, Mass. [u.a.] : Blackwell
    Call number: AWI G3-23-95310
    Type of Medium: Monograph available for loan
    Pages: XVIII, 261 Seiten , Illustrationen, Diagramme, Karten
    ISBN: 140512976X , 1-4051-2976-X , 978-1-4051-2976-3
    Series Statement: Environmental systems and global change series 1
    Language: English
    Note: Contents Preface 1 The evidence for cryospheric change 1.1 Introduction 1.2 The geomorphic and hydrologic effects of cryospheric change 1.3 Sub-arctic and alpine hydrology 1.4 Glacier loss and mountain permafrost 1.5 Permafrost 1.6 The carbon balance of the cryosphere 1.7 River and lake ice break-up and freeze-up 1.8 Ocean circulation 1.9 The mass balance of the polar ice sheets 1.10 Sea level 1.11 Importance of sea ice. 1.12 Ecological impacts 1.13 Socio-economic effects 1.14 Conclusions (Text word count-including figure captions and tables but excluding references- 9,015) 2 The monitoring of cryospheric change 2.1 Introduction 2.2 In situ measurements 2.2.1 Land surface air temperature 2.2.2 Terrestrial snow and snow on sea ice 2.2.3 Sea ice 2.2.4 Ice sheets and alpine glaciers 2.2.5 Permafrost and seasonally frozen ground 2.2.6 River runoff 2.2.7 River and lake ice freeze-up and break-up 2.3 Conclusions 3 Processes of cryospheric change 3.1 Introduction 3.2 Snow and ice as energy regulators 3.2.1 The energetics of the snow surface 3.2.2 The energetics of the snowpack 3.2.3 The energetics of glaciers 3.2.4 The energetics of sea ice and various terrain types 3.2.5 Permafrost 3.3 Snow and ice reservoir functions 3.3.1 Mass budget for snow 3.3.2 Mass balance for glacier ice 3.3.3 The mass balance of an ice sheet 3.3.4 Mass balance of sea ice 3.4 Snowfall 3.4.1 Interception by vegetation 3.4.2 Snow accumulation 3.4.3 Snow cover structure 3.5 Snow avalanches 3.6 Snow melt, runoff and streamflow generation 3.7 Snow chemistry 3.8 Snow ecology 3.9 Glacier melt 3.10 Formation of an ice cover 3.11 River and lake ice 3.12 Sediment budgets 4 Patterns of the contemporary cryosphere at local to global scales 4.1 Introduction 4.2 Remote sensing observations 4.3 Land and sea surface temperature 4.3.1 Terrestrial snow and snow on sea ice 4.3.2 Sea ice 4.3.3 Ice sheets & glaciers: estimation of volume 4.3.4 Ice sheets & glaciers: mass balance components 4.3.5 Permafrost 4.3.6 River runoff 4.3.7 River and lake ice freeze-up/break-up 4.4 Numerical Models 4.5 Conclusions: validation, coordinated projects and climate data records 5 The evidence for past cryospheric changes 5.1 Introduction 5.2 The uniqueness of the Quaternary Period 5.3. Initiation of glacial ages 5.4 Reconstructing extent of glacial environments 5.5 Extreme events 5.6 Ice sheet modelling 5.6.1 The Antarctic Ice Sheet 5.6.2 Greenland 5.6.3 North America: Innuitian, Laurentide and Cordilleran ice sheets 5.6.4 British Isles, Scandinavian and Barents ice sheets 5.6.5 The Patagonian and New Zealand ice caps 5.7 Non-glacial Quaternary environments 5.7.1 Late Quaternary permafrost in North America and Europe 5.7.2 Treeline variations 5.7.3 Climatic snowline 5.7.4 Glacier fluctuations 5.7.5 Paraglaciation 6 The transience of the cryosphere and transitional landscapes 6.1 Introduction 6.1.1 The landscape as palimpsest 6.2 Glacial landscapes: macro scale 6.2.1 Cirque landscapes 6.2.2 Fjord and strandflat landscapes 6.3 Periglacial landscapes: macro-scale 6.4 Paraglacial landscapes: macro-scale 6.5 Glacial landscapes: medium-scale 6.5.1 The transition from glacial to fluvial dominance 6.6 Proglacial landscapes: medium-scale 6.6.1 Glacifluvial landforms 6.6.2 The Channeled Scablands 6.6.3 Sub-glacial channels 6.6.4 Sub-glacial, ice-marginal and supraglacial sediment-landform associations 6.7 Periglacial landscapes: medium scale 6.7.1 The transition from periglacial to fluvial dominance 6.8 Paraglacial landscapes: medium-scale 6.9 Glacial landscapes: local-scale 6.9.1 Primary glacigenic deposits 6.9.2 Small scale erosional forms 6.10 Proglacial landscapes: local-scale 6.11 Periglacial landscapes: local scale 6.13 Paraglacial landscapes: local-scale 6.13 Landscape resistance, collapse and recovery 6.14 Transitional landscapes at Quaternary, Holocene and Anthropocene timescales 7 Cryospheric change and vulnerability at Quaternary, Holocene and Anthropocene time scales 7.1 Introduction 7.2 Panarchy 7.2.1 Panarchy, sustainability and transformability 7.2.2 Collapse and the vulnerability of socio-economic systems 7.3 Changing ice cover and biomes since the Last Glacial Maximum 7.3.1 The Last Glacial Maximum 7.3.2 The Holocene Optimum 7.4 The first explorers in North America 7.5 Implications of cryospheric change/collapse 7.5.1 Snow quantity 7.5.2 Snow quality 7.5.3 River and lake ice 7.5.4 Permafrost 7.5.5 Glaciers 7.5.6 River basins 7.5.7 Sea ice 7.5.8 Ice sheets 7.5.9 Sea level change 7.5.10 Carbon sequestration 7.5.11 Vegetation 7.5.12 Polar bears 7.5.13 Human health 7.5.14 Persistent organic pollutants 7.5.15 Socio-cultural conditions and health status 7.5.16 Livelihoods and socio-economic conditions 7.5.17 Governance 7.6 Concluding thoughts References Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    New York, NY : Springer
    Call number: AWI S2-23-95184
    Description / Table of Contents: A comprehensive and practical guide to analysing ecological data based on courses given to researchers, environmental consultants and post graduate students. Provides comprehensive introductory chapters together with 17 detailed case study chapters written jointly with former course attendants. Each case study explores the statistical options most appropriate to the ecological questions being asked and will help the reader choose the best approach to analysing their own data. A non-mathematical, but modern approach (GLM, GAM, mixed models, tree models, neural networks) is used throughout the book, making it ideally suited to practicing ecologists and environmental scientists as well as professional statisticians. All data sets from the case studies are available for downloading from www.highstat.com
    Type of Medium: Monograph available for loan
    Pages: XXVI, 672 Seiten , Illustrationen , 24 cm
    ISBN: 0387459677 (hbk) , 9780387459677 (hbk) , 978-0-387-45967-7 , 0387459723 (electronic) , 9780387459723 (electronic)
    Series Statement: Statistics for biology and health
    Language: English
    Note: Contents Contributors 1 Introduction 1.1 Part 1: Applied statistical theory 1.2 Part 2: The case studies 1.3 Data, software and flowcharts 2 Data management and software 2.1 Introduction 2.2 Data management 2.3 Data preparation 2.4 Statistical software 3 Advice for teachers 3.1 Introduction 4 Exploration 4.1 The first steps 4.2 Outliers, transformations and standardisations 4.3 A final thought on data exploration 5 Linear regression 5.1 Bivariate linear regression 5.2 Multiple linear regression 5.3 Partial linear regression 6 Generalised linear modelling 6.1 Poisson regression 6.2 Logistic regression 7 Additive and generalised additive modelling 7.1 Introduction 7.2 The additive model 7.3 Example of an additive model 7.4 Estimate the smoother and amount of smoothing 7.5 Additive models with multiple explanatory variables 7.6 Choosing the amount of smoothing 7.7 Model selection and validation 7.8 Generalised additive modelling 7.9 Where to go from here 8 Introduction to mixed modelling 8.1 Introduction 8.2 The random intercept and slope model 8.3 Model selection and validation 8.4 A bit of theory 8.5 Another mixed modelling example 8.6 Additive mixed modelling 9 Univariate tree models 9.1 Introduction 9.2 Pruning the tree 9.3 Classification trees 9.4 A detailed example: Ditch data 10 Measures of association 10.1 Introduction 10.2 Association between sites: Q analysis 10.3 Association among species: R analysis 10.4 Q and R analysis: Concluding remarks 10.5 Hypothesis testing with measures of association 11 Ordination — First encounter 11.1 Bray-Curtis ordination 12 Principal component analysis and redundancy analysis 12.1 The underlying principle of PCA 12.2 PCA: Two easy explanations 12.3 PCA: Two technical explanations 12.4 Example of PCA 12.5 The biplot 12.6 General remarks 12.7 Chord and Hellinger transformations 12.8 Explanatory variables 12.9 Redundancy analysis 12.10 Partial RDA and variance partitioning 12.11 PCA regression to deal with collinearity 13 Correspondence analysis and canonical correspondence analysis 13.1 Gaussian regression and extensions 13.2 Three rationales for correspondence analysis 13.3 From RGR to CCA13.4 Understanding the CCA triplot 13.5 When to use PCA, CA, RDA or CCA 13.6 Problems with CA and CCA 14 Introduction to discriminant analysis 14.1 Introduction 14.2 Assumptions 14.3 Example 14.4 The mathematics 14.5 The numerical output for the sparrow data 15 Principal coordinate analysis and non-metric multidimensional scaling 15.1 Principal coordinate analysis 15.2 Non-metric multidimensional scaling 16 Time series analysis — Introduction 16.1 Using what we have already seen before 16.2 Auto-regressive integrated moving average models with exogenous variables 17 Common trends and sudden changes 17.1 Repeated LOESS smoothing 17.2 Identifying the seasonal component 17.3 Common trends: MAFA 17.4 Common trends: Dynamic factor analysis 17.5 Sudden changes: Chronological clustering 18 Analysis and modelling of lattice data 18.1 Lattice data 18.2 Numerical representation of the lattice structure 18.3 Spatial correlation 18.4 Modelling lattice data 18.5 More exotic models 18.6 Summary 19 Spatially continuous data analysis and modelling 19.1 Spatially continuous data 19.2 Geostatistical functions and assumptions 19.3 Exploratory variography analysis 19.4 Geostatistical modelling: Kriging 19.5 A full spatial analysis of the bird radar data 20 Univariate methods to analyse abundance of decapod larvae 20.1 Introduction 20.2 The data 20.3 Data exploration 20.4 Linear regression results 20.5 Additive modelling results 20.6 How many samples to take? 20.7 Discussion 21 Analysing presence and absence data for flatfish distribution in the Tagus estuary, Portugal 21.1 Introduction 21.2 Data and materials 21.3 Data exploration 21.4 Classification trees 21.5 Generalised additive modelling 21.6 Generalised linear modelling 21.7 Discussion 22 Crop pollination by honeybees in Argentina using additive mixed modelling 22.1 Introduction 22.2 Experimental setup 22.3 Abstracting the information 22.4 First steps of the analyses: Data exploration 22.5 Additive mixed modelling 22.6 Discussion and conclusions 23 Investigating the effects of rice farming on aquatic birds with mixed modelling 23.1 Introduction 23.2 The data 23.3 Getting familiar with the data: Exploration 23.4 Building a mixed model 23.5 The optimal model in terms of random components 23.6 Validating the optimal linear mixed model 23.7 More numerical output for the optimal model 23.8 Discussion 24 Classification trees and radar detection of birds for North Sea wind farms 24.1 Introduction 24.2 From radars to data 24.3 Classification trees 24.4 A tree for the birds 24.5 A tree for birds, clutter and more clutter 24.6 Discussion and conclusions 25 Fish stock identification through neural network analysis of parasite fauna 25.1 Introduction 25.2 Horse mackerel in the northeast Atlantic 25.3 Neural networks 25.4 Collection of data 25.5 Data exploration 25.6 Neural network results 25.7 Discussion 26 Monitoring for change: Using generalised least squares, non-metric multidimensional scaling, and the Mantel test on western Montana grasslands 26.1 Introduction 26.2 The data 26.3 Data exploration 26.4 Linear regression results 26.5 Generalised least squares results 26.6 Multivariate analysis results 26.7 Discussion 27 Univariate and multivariate analysis applied on a Dutch sandy beach community 27.1 Introduction 27.2 The variables 27.3 Analysing the data using univariate methods 27.4 Analysing the data using multivariate methods 27.5 Discussion and conclusions 28 Multivariate analyses of South-American zoobenthic species — spoilt for choice 28.1 Introduction and the underlying questions 28.2 Study site and sample collection 28.3 Data exploration 28.4 The Mantel test approach 28.5 The transformation plus RDA approach 28.6 Discussion and conclusions 29 Principal component analysis applied to harbour porpoise fatty acid data 29.1 Introduction 29.2 The data 29.3 Principal component analysis 29.4 Data exploration 29.5 Principal component analysis results 29.6 Simpler alternatives to PCA 29.7 Discussion 30 Multivariate analyses of morphometric turtle data — size and shape 30.1 Introduction 30.2 The turtle data 30.3 Data exploration 30.4 Overview of classic approaches related to PCA 30.5 Applying PCA to the original turtle data 30.6 Classic morphometric data analysis approaches 30.7 A geometric morphometric approach 31 Redundancy analysis and additive modelling applied on savanna tree data 31.1 Introduction 31.2 Study area 31.3 Methods 31.4 Results 31.5 Discussion 32 Canonical correspondence analysis of lowland pasture vegetation in the humid tropics of Mexico 32.1 Introduction 32.2 The study area 32.3 The data 32.4 Data exploration 32.5 Canonical correspondence analysis results 32.6 African star grass 32.7 Discussion and conclusion 33 Estimating common trends in Portuguese fisheries landings 33.1 Introduction 33.2 The time series data 33.3 MAFA and DFA 33.4 MAFA results 33.5 DFA results 33.6 Discussion 34 Common trends in demersal communities on the Newfoundland-Labrador Shelf 34.1 Introduction 34.2 Data 34.3 Time series analysis 34.4 Discussion 35 Sea level change and salt marshes in the Wadden Sea: A time series analysis 35.1 Interaction between hydrodynamical and biological factors 35.2 The data 35.3 Data exploration 35.4 Additive mixed modelling 35.5 Additive mixed modelling results 35.6 Discussion 36 Time series analysis of Hawaiian waterbirds 36.1 Introduction 36.2 Endangered Hawaiian waterbirds 36.3 Data exploration 36.4 Three ways to estimate trends 36.5 Additive mixed modelling 36.6 Sudden breakpoints 36.7 Discussion 37 Spatial modelling of forest community features in the Volzhsko-Kamsky reserve 37.1 Introduction 37.2 Study area 37.3 Data exploration 37.4 Models of boreality without spatial auto-correlation 37.5 Models of boreality with spatial auto-correlation 37.6 Conclusion References Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    IUGG Secretariat, CIRES Cooperative Institute for Research in Environmental Sciences, University of Colorado
    In:  IUGG Annual Report
    Publication Date: 2023-03-02
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Journal available for loan
    Journal available for loan
    Tübingen : Mohr Siebeck ; 1.1884 - 48.1931; N.F. 1.1932/33 - 10.1943/44(1945),3; 11.1948/49(1949) -
    Call number: ZS 22.95039
    Type of Medium: Journal available for loan
    Pages: Online-Ressource
    ISSN: 1614-0974 , 0015-2218 , 0015-2218
    Language: German , English
    Note: N.F. entfällt ab 57.2000. - Volltext auch als Teil einer Datenbank verfügbar , Ersch. ab 2000 in engl. Sprache mit dt. Hauptsacht.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: MR 22.94991
    Type of Medium: Monograph available for loan
    Pages: 186, XVI, 187 - 410 Seiten , Illustrationen [zum Teil farbig], graphische Darstellungen, Karten
    ISBN: 978-1893912-00-7
    Series Statement: SI/MAB Series 11
    Language: English
    Note: Sprache der Zusammenfassung: Französisch
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Chichester : Wiley
    Call number: AWI G3-08-0013 ; 13/M 13.0053 ; AWI G3-22-5374
    Description / Table of Contents: The periglacial environment, Third Edition, provides an authoritative overview of the world's cold, non-glacial environments. Emphasis is placed upon the North American and Eurasian polar lowlands. Examples are also drawn from Antarctica, the Qinghai-Xizang (Tibet) Plateau, and the northern mid-latitudes. [...] The Third Edition continues to be a personal interpretation of the frost-induced conditions, geomorphic processes, and landforms that typify periglacial environments. The text is divided into four parts. Part One discusses the periglacial concept and its interactions with geomorphology, geocryology and Quaternary science. It also outlines the range and variability of periglacial climates and the degree to which landscapes are in geomorphic equilibrium with prevailing periglacial conditions. Part Two describes present-day terrain that is either underlain by permafrost or experiencing intense frost action. The roles played by cryogenic weathering, ground ice, mass wasting, running water, wind action, snow and ice, and coastal processes are systematically analysed. Part Three summarizes evidence for the existence of periglacial conditions during the cold periods of the Pleistocene. Special reference is made to the mid-latitudes of Europe and North America. Part Four illustrates the geotechnical problems associated with human activity and resource development in periglacial environments, and discusses the potential impact of global climate change in the northern high latitudes.
    Type of Medium: Monograph available for loan
    Pages: XVIII, 458 Seiten , Illustrationen
    Edition: Third edition
    ISBN: 9780470865897
    Classification:
    Geography and Geomorphology
    Language: English
    Note: Contents: Preface to First Edition. - Preface to Second Edition. - Preface to Third Edition. - Acknowledgments. - Part I The Periglacial Domain. - 1 Introduction. - 1.1 The Periglacial Concept. - 1.2 Disciplinary Considerations. - 1.2.1 The Growth of Geocryology. - 1.2.2 The Changing Nature of Quaternary Science. - 1.2.3 Modern Periglacial Geomorphology. - 1.3 The Growth of Periglacial Knowledge. - 1.4 The Periglacial Domain. - 1.5 The Scope of Periglacial Geomorphology. - 1.5.1 Permafrost-Related Processes and Landforms. - 1.5.2 Azonal Processes and Landforms. - 1.5.3 Paleo-Environmental Reconstruction. - 1.5.4 Applied Periglacial Geomorphology. - Advanced Reading. - Discussion Topics. - 2 Periglacial Landscapes?. - 2.1 Introduction. - 2.2 Proglacial, Paraglacial or Periglacial?. - 2.3 Unglaciated Periglacial Terrain. - 2.3.1 Beaufort Plain, Northwest Banks Island, Arctic Canada. - 2.3.2 Barn Mountains, Northern Interior Yukon Territory, Canada. - 2.4 Relict Periglacial Landscapes. - 2.4.1 Chalk Uplands, Southern England and Northern France. - 2.4.2 Pine Barrens, Southern New Jersey, Eastern USA. - 2.5 Conclusions. - Advanced Reading. - Discussion Topics. - 3 Periglacial Climates. - 3.1 Boundary Conditions. - 3.2 Periglacial Climates. - 3.2.1 High Arctic Climates. - 3.2.2 Continental Climates. - 3.2.3 Qinghai-Xizang (Tibet) Plateau. - 3.2.4 Alpine Climates. - 3.2.5 Climates of Low Annual Temperature Range. - 3.2.6 Antarctica: A Special Case. - 3.3 Ground Climates. - 3.3.1 The n-Factor. - 3.3.2 The Thermal Offset. - 3.4 Periglacial Climates and the Cryosphere. - Advanced Reading. - Discussion Topics. - Part II Present-Day Periglacial Environments. - 4 Cold-Climate Weathering. - 4.1 Introduction. - 4.2 Ground Freezing. - 4.2.1 The Freezing Process. - 4.2.2 Ice Segregation. - 4.2.3 The Frozen Fringe. - 4.2.4 Frost Heave. - 4.3 Freezing and Thawing. - 4.4 The Ground-Temperature Regime. - 4.4.1 The Seasonal Regime. - 4.4.2 Short-Term Fluctuations. - 4.5 Rock (Frost?) Shattering. - 4.5.1 Frost Action and Ice Segregation. - 4.5.2 Frost Weathering Models. - 4.5.3 Insolation Weathering and Thermal Shock. - 4.5.4 Discussion and Perspective. - 4.6 Chemical Weathering. - 4.6.1 General. - 4.6.2 Solution and Karstification. - 4.6.3 Salt Weathering. - 4.7 Cryogenic Weathering. - 4.8 Cryobiological Weathering. - 4.9 Cryopedology. - 4.9.1 Cryosols. - 4.9.2 Soil Micromorphology. - Advanced Reading. - Discussion Topics. - 5 Permafrost. - 5.1 Introduction. - 5.1.1 Definition. - 5.1.2 Moisture and Ice within Permafrost. - 5.2 Thermal and Physical Properties. - 5.2.1 The Geothermal Regime. - 5.2.2 Physical Properties. - 5.2.3 Thermal Properties. - 5.3 How Does Permafrost Aggrade?. - 5.3.1 General Principles. - 5.3.2 The Illisarvik Drained-Lake Experiment. - 5.4 Distribution of Permafrost. - 5.4.1 Latitudinal Permafrost. - 5.4.2 Alpine (Mountain) Permafrost. - 5.4.3 Montane Permafrost of Central Asia and China. - 5.5 Relict Permafrost. - 5.5.1 Sub-Sea Permafrost. - 5.5.2 Relict (Terrestrial) Permafrost. - 5.6 Permafrost Hydrology. - 5.6.1 Aquifers. - 5.6.2 Hydrochemistry. - 5.6.3 Groundwater Icings. - 5.7 Permafrost and Terrain Conditions. - 5.7.1 Relief and Aspect. - 5.7.2 Rock Type. - 5.7.3 Vegetation. - 5.7.4 Snow Cover. - 5.7.5 Fire. - 5.7.6 Lakes and Surface Water Bodies. - 5.8 The Active Layer. - 5.8.1 The Transient Layer. - 5.8.2 The Stefan Equation. - 5.8.3 Active-Layer Thermal Regime. - Advanced Reading. - Discussion Topics. - 6 Surface Features of Permafrost. - 6.1 Introduction. - 6.2 Thermal-Contraction-Crack Polygons. - 6.2.1 Coefficients of Thermal Expansion and Contraction. - 6.2.2 Ice, Sand, and Soil Wedges. - 6.2.3 Development of the Polygon Net. - 6.2.4 Polygon Morphology. - 6.2.5 Controls Over Cracking. - 6.2.6 Climatic Significance. - 6.3 Organic Terrain. - 6.3.1 Palsas. - 6.3.2 Peat Plateaus. - 6.4 Rock Glaciers. - 6.4.1 Creeping Permafrost. - 6.4.2 Types and Distribution. - 6.4.3 Origin. - 6.5 Frost Mounds. - 6.5.1 Perennial-Frost Mounds. - 6.5.2 Hydraulic (Open) System Pingos. - 6.5.3 Hydrostatic (Closed) System Pingos. - 6.5.4 Other Perennial-Frost Mounds. - 6.5.5 Seasonal-Frost Mounds. - 6.5.6 Hydrolaccoliths and Other Frost-Induced Mounds. - 6.6 Active-Layer Phenomena. - 6.6.1 Bedrock Heave. - 6.6.2 Needle Ice. - 6.6.3 Cryoturbation and Frost Heave. - 6.6.4 Frost Sorting. - 6.6.5 Patterned Ground. - Advanced Reading. - Discussion Topics. - 7 Ground lce. - 7.1 Introduction. - 7.2 Classification. - 7.2.1 Pore Ice. - 7.2.2 Segregated Ice. - 7.2.3 Intrusive Ice. - 7.2.4 Vein Ice. - 7.2.5 Other Types of Ice. - 7.3 Ice Distribution. - 7.3.1 Amounts. - 7.3.2 Distribution with Depth. - 7.3.3 Ice in Bedrock. - 7.3.4 Ice in Unconsolidated Sediments. - 7.4 Cryostratigraphy and Cryolithology. - 7.4.1 Cryostructures, Cryotextures, and Cryofacies. - 7.4.2 Epigenetic and Syngenetic Cryostructures. - 7.4.3 Thaw Unconformities. - 7.4.4 Ice Crystallography. - 7.4.5 Ice Geochemistry. - 7.4.6 Cryostratigraphy and Past Environments. - 7.5 Ice Wedges. - 7.5.1 Epigenetic Wedges. - 7.5.2 Syngenetic Wedges. - 7.5.3 Anti-Syngenetic Wedges. - 7.6 Massive Ice and Massive-Icy Bodies. - 7.6.1 Nature and Extent. - 7.6.2 Intra-Sedimental Ice. - 7.6.3 Buried Glacier Ice. - 7.6.4 Other Mechanisms. - Advanced Reading. - Discussion Topics. - 8 Thermokarst. - 8.1 Introduction. - 8.2 Causes of Thermokarst. - 8.2.1 General. - 8.2.2 Specific. - 8.3 Thaw-Related Processes. - 8.3.1 Thermokarst Subsidence. - 8.3.2 Thermal Erosion. - 8.3.3 Other Processes. - 8.4 Thermokarst Sediments and Structures. - 8.4.1 Involuted Sediments. - 8.4.2 Retrogressive-Thaw-Slumps and Debris-Flow Deposits. - 8.4.3 Ice-Wedge Pseudomorphs and Composite-Wedge Casts. - 8.4.4 Ice, Silt, Sand, and Gravel Pseudomorphs. - 8.5 Ice-Wedge Thermokarst Relief. - 8.5.1 Low-Centered Polygons. - 8.5.2 High-Centered Polygons. - 8.5.3 Badland Thermokarst Relief. - 8.6 Thaw Lakes and Depressions. - 8.6.1 Morphology. - 8.6.2 Growth and Drainage. - 8.6.3 Oriented Thaw Lakes. - 8.7 Thermokarst-Affected Terrain. - 8.7.1 The Lowlands of Central and Northern Siberia. - 8.7.2 The Western North American Arctic. - 8.8 Human-Induced Thermokarst. - 8.8.1 Causes. - 8.8.2 Case Studies. - Advanced Reading. - Discussion Topics. - 9 Hillslope Processes and Slope Evolution. - 9.1 Introduction. - 9.2 Slope Morphology. - 9.2.1 The Free-Face Model. - 9.2.2 Rectilinear Debris-Mantled Slopes. - 9.2.3 Convexo-Concavo Debris-Mantled Slopes. - 9.2.4 Pediment-Like Slopes. - 9.2.5 Stepped Profiles. - 9.3 Mass Wasting. - 9.4 Slow Mass-Wasting Processes. - 9.4.1 Solifluction. - 9.4.2 Frost Creep. - 9.4.3 Gelifluction. - 9.4.4 Solifluction Deposits and Phenomena. - 9.5 Rapid Mass Wasting. - 9.5.1 Active-Layer-Detachment Slides. - 9.5.2 Debris Flows, Slushflows, and Avalanches. - 9.5.3 Rockfall. - 9.6 Slopewash. - 9.6.1 Snow-Bank Hydrology. - 9.6.2 Surface and Subsurface Wash. - 9.7 Frozen and Thawing Slopes. - 9.7.1 Permafrost Creep. - 9.7.2 Thermokarst and Thaw Consolidation. - 9.7.3 Stability of Thawing Slopes. - 9.8 Cold-Climate Slope Evolution. - 9.8.1 Cryoplanation. - 9.8.2 Slope Replacement and Richter Denudation Slopes. - 9.8.3 Rapidity of Profile Change. - 9.8.4 Summary. - Advanced Reading. - Discussion Topics. - 10 Azonal Processes and Landforms. - 10.1 Introduction. - 10.2 Fluvial Processes and Landforms. - 10.2.1 Major Rivers. - 10.2.2 Freeze-Up and Break-Up. - 10.2.3 Basin Hydrology. - 10.2.4 Sediment Flow, Surface Transport, and Denudation. - 10.2.5 Fluvio-Thermal Erosion. - 10.2.6 Channel Morphology. - 10.2.7 Valley Asymmetry. - 10.3 Eolian Processes and Sediments. - 10.3.1 Wind Abrasion. - 10.3.2 Wind Deflation. - 10.3.3 Niveo-Eolian Sediments. - 10.3.4 Loess-Like Silt. - 10.3.5 Sand Dunes and San
    Location: AWI Reading room
    Location: Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2022-02-26
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...