ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Annual Reviews
Collection
Years
  • 11
    facet.materialart.
    Unknown
    Annual Reviews
    Publication Date: 2022-05-25
    Description: Author Posting. © Annual Reviews, 2006. This article is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Fluid Mechanics 38 (2006): 395-425, doi:10.1146/annurev.fluid.38.050304.092129.
    Description: Over the past four decades, the combination of in situ and remote sensing observations has demonstrated that long nonlinear internal solitary-like waves are ubiquitous features of coastal oceans. The following provides an overview of the properties of steady internal solitary waves and the transient processes of wave generation and evolution, primarily from the point of view of weakly nonlinear theory, of which the Korteweg-de Vries equation is the most frequently used example. However, the oceanographically important processes of wave instability and breaking, generally inaccessible with these models, are also discussed. Furthermore, observations often show strongly nonlinear waves whose properties can only be explained with fully nonlinear models.
    Description: KRH acknowledges support from NSF and ONR and an Independent Study Award from the Woods Hole Oceanographic Institution. WKM acknowledges support from NSF and ONR, which has made his work in this area possible, in close collaboration with former graduate students at Scripps Institution of Oceanography and MIT.
    Keywords: Solitary waves ; Nonlinear waves ; Stratified flow ; Physical Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1034976 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: First published online as a Review in Advance on October 24, 2005. (Some corrections may occur before final publication online and in print)
    Description: Author Posting. © Annual Reviews, 2005. This article is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Physiology 68 (2006): 22.1-22.29, doi:10.1146/annurev.physiol.68.040104.105418.
    Description: Superfast muscles of vertebrates power sound production. The fastest, the swimbladder muscle of toadfish, generates mechanical power at frequencies in excess of 200 Hz. To operate at these frequencies, the speed of relaxation has had to increase approximately 50-fold. This increase is accomplished by modifications of three kinetic traits: (a) a fast calcium transient due to extremely high concentration of sarcoplasmic reticulum (SR)-Ca2+ pumps and parvalbumin, (b) fast off-rate of Ca2+ from troponin C due to an alteration in troponin, and (c) fast cross-bridge detachment rate constant (g, 50 times faster than that in rabbit fast-twitch muscle) due to an alteration in myosin. Although these three modifications permit swimbladder muscle to generate mechanical work at high frequencies (where locomotor muscles cannot), it comes with a cost: The high g causes a large reduction in attached force-generating cross-bridges, making the swimbladder incapable of powering low-frequency locomotory movements. Hence the locomotory and sound-producing muscles have mutually exclusive designs.
    Description: This work was made possible by support from NIH grants AR38404 and AR46125 as well as the University of Pennsylvania Research Foundation.
    Keywords: Parvalbumin ; Ca2+ release ; Ca2+ uptake ; Cross-bridges ; Adaptation ; Sound production ; Whitman Center
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 567086 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-10-27
    Description: β-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein–coupled receptors. However, β-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two β-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed β-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both β-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that β-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4278
    Electronic ISSN: 1545-1585
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-10-27
    Description: Complex multicellular organisms have evolved specific mechanisms to replenish cells in homeostasis and during repair. Here, we discuss how emerging technologies (e.g., single-cell RNA sequencing) challenge the concept that tissue renewal is fueled by unidirectional differentiation from a resident stem cell. We now understand that cell plasticity, i.e., cells adaptively changing differentiation state or identity, is a central tissue renewal mechanism. For example, mature cells can access an evolutionarily conserved program (paligenosis) to reenter the cell cycle and regenerate damaged tissue. Most tissues lack dedicated stem cells and rely on plasticity to regenerate lost cells. Plasticity benefits multicellular organisms, yet it also carries risks. For one, when long-lived cells undergo paligenotic, cyclical proliferation and redifferentiation, they can accumulate and propagate acquired mutations that activate oncogenes and increase the potential for developing cancer. Lastly, we propose a new framework for classifying patterns of cell proliferation in homeostasis and regeneration, with stem cells representing just one of the diverse methods that adult tissues employ. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4278
    Electronic ISSN: 1545-1585
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-10-27
    Description: Sepsis is expected to have a substantial impact on public health and cost as its prevalence increases. Factors contributing to increased prevalence include a progressively aging population, advances in the use of immunomodulatory agents to treat a rising number of diseases, and immune-suppressing therapies in organ transplant recipients and cancer patients. It is now recognized that sepsis is associated with profound and sustained immunosuppression, which has been implicated as a predisposing factor in the increased susceptibility of patients to secondary infections and mortality. In this review, we discuss mechanisms of sepsis-induced immunosuppression and biomarkers that identify a state of impaired immunity. We also highlight immune-enhancing strategies that have been evaluated in patients with sepsis, as well as therapeutics under current investigation. Finally, we describe future challenges and the need for a new treatment paradigm, integrating predictive enrichment with patient factors that may guide the future selection of tailored immunotherapy. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4278
    Electronic ISSN: 1545-1585
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-10-26
    Description: As the most phenotypically diverse mammalian species that shares human environments and access to sophisticated healthcare, domestic dogs have unique potential to inform our understanding of the determinants of aging. Here we outline key concepts in the study of aging and illustrate the value of research with dogs, which can improve dog health and support translational discoveries. We consider similarities and differences in aging and age-related diseases in dogs and humans and summarize key advances in our understanding of genetic and environmental risk factors for morbidity and mortality in dogs. We address health outcomes ranging from cancer to cognitive function and highlight emerging research opportunities from large-scale cohort studies in companion dogs. We conclude that studying aging in dogs could overcome many limitations of laboratory models, most notably, the ability to assess how aging-associated pathways influence aging in real-world environments similar to those experienced by humans. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 2165-8102
    Electronic ISSN: 2165-8110
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-10-26
    Description: Reproductive science in the context of conservation biology is often understood solely in terms of breeding threatened species. Although technologies developed primarily for agriculture or biomedicine have a potentially important role in species conservation, their effectiveness is limited if we regard the main objective of animal conservation as helping to support populations rather than to breed a small number of individuals. The global threats facing wild species include the consequences of climate change, population growth, urbanization, atmospheric and water pollution, and the release of chemicals into the environment, to cite but a few. Reproductive sciences provide important and often unexpected windows into many of these consequences, and our aim here is both to demonstrate the breadth of reproductive science and the importance of basic knowledge and to suggest where some of the insights might be useful in mitigating the problems. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 2165-8102
    Electronic ISSN: 2165-8110
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-10-26
    Description: An estimated 1.3 million Salmonella infections and 420 deaths occur annually in the United States, with an estimated economic burden of $3.7 billion. More than 50% of US swine operations test positive for Salmonella according to the National Animal Health Monitoring System, and 20% of Salmonella from swine are multidrug resistant (resistant to ≥3 antimicrobial classes) as reported by the National Antimicrobial Resistance Monitoring System. This review on Salmonella in swine addresses the current status of these topics by discussing antimicrobial resistance and metal tolerance in Salmonella and the contribution of horizontal gene transfer. A major challenge in controlling Salmonella is that Salmonella is a foodborne pathogen in humans but is often a commensal in food animals and thereby establishes an asymptomatic reservoir state in such animals, including swine. As food animal production systems continue to expand and antimicrobial usage becomes more limited, the need for Salmonella interventions has intensified. A promising mitigation strategy is vaccination against Salmonella in swine to limit animal, environmental, and food contamination. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 2165-8102
    Electronic ISSN: 2165-8110
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-10-26
    Description: Cerebral small vessel disease (SVD) is highly prevalent and a common cause of ischemic and hemorrhagic stroke and dementia, yet the pathophysiology is poorly understood. Its clinical expression is highly varied, and prognostic implications are frequently overlooked in clinics; thus, treatment is currently confined to vascular risk factor management. Traditionally, SVD is considered the small vessel equivalent of large artery stroke (occlusion, rupture), but data emerging from human neuroimaging and genetic studies refute this, instead showing microvessel endothelial dysfunction impacting on cell–cell interactions and leading to brain damage. These dysfunctions reflect defects that appear to be inherited and secondary to environmental exposures, including vascular risk factors. Interrogation in preclinical models shows consistent and converging molecular and cellular interactions across the endothelial-glial-neural unit that increasingly explain the human macroscopic observations and identify common patterns of pathology despite different triggers. Importantly, these insights may offer new targets for therapeutic intervention focused on restoring endothelial-glial physiology. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4278
    Electronic ISSN: 1545-1585
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-10-26
    Description: Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice. Consequently, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4278
    Electronic ISSN: 1545-1585
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...