ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,096,662)
  • Molecular Diversity Preservation International  (451,468)
  • Springer Nature  (357,978)
  • Wiley  (287,216)
  • 2020-2022  (328,462)
  • 2015-2019  (659,969)
  • 1985-1989  (82,859)
  • 1935-1939  (25,372)
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Limnology and Oceanography, Wiley, 63(3), pp. 1444-1444, ISSN: 0024-3590
    Publication Date: 2024-05-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-08
    Description: The authors regret an error in the published article, where incorrect data was used to produce Figure 2, showing the temporal development of pH over the duration of the experiment. The corrected Fig. 2 shows that the error did not affect the interpretation of nor the conclusions drawn from the present dataset. The original article has been corrected.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3BIOspektrum, Springer Nature, 24(7), pp. 750-751, ISSN: 0947-0867
    Publication Date: 2024-05-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3BIOspektrum, Springer Nature, 25(1), pp. 50-57, ISSN: 0947-0867
    Publication Date: 2024-05-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-11
    Description: Arctic river deltas are highly dynamic environments in the northern circumpolar permafrost region that are affected by fluvial, coastal, and permafrost-thaw processes. They are characterized by thick sediment deposits containing large but poorly constrained amounts of frozen organic carbon and nitrogen. This study presents new data on soil organic carbon and nitrogen storage as well as accumulation rates from the Ikpikpuk and Fish Creek river deltas, two small, permafrost-dominated Arctic river deltas on the Arctic Coastal Plain of northern Alaska. A soil organic carbon storage of 42.4 ± 1.6 and 37.9 ± 3.5 kg C m− 2 and soil nitrogen storage of 2.1 ± 0.1 and 2.0 ± 0.2 kg N m− 2 was found for the first 2 m of soil for the Ikpikpuk and Fish Creek river delta, respectively. While the upper meter of soil contains 3.57 Tg C, substantial amounts of carbon (3.09 Tg C or 46%) are also stored within the second meter of soil (100–200 cm) in the two deltas. An increasing and inhomogeneous distribution of C with depth is indicative of the dominance of deltaic depositional rather than soil forming processes for soil organic carbon storage. Largely, mid- to late Holocene radiocarbon dates in our cores suggest different carbon accumulation rates for the two deltas for the last 2000 years. Rates up to 28 g C m− 2 year− 1 for the Ikpikpuk river delta are about twice as high as for the Fish Creek river delta. With this study, we highlight the importance of including these highly dynamic permafrost environments in future permafrost carbon estimations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Transactions of the Institute of British Geographers, Wiley, 43(1), pp. 61-78, ISSN: 0020-2754
    Publication Date: 2024-02-07
    Description: The Pacific region of Colombia, like many sparsely populated places in developing countries, has been imagined as empty in social terms, and yet full in terms of natural resources and biodiversity. These imaginaries have enabled the creation of frontiers of land and sea control, where the state as well as private and illegal actors have historically dispossessed Afro-descendant and indigenous peoples. This paper contributes to the understanding of territorialisation in the oceans, where political and legal framings of the sea as an open-access public good have neglected the existence of marine social processes. It shows how Afro-descendant communities and non-state actors are required to use the language of resources, rather than socio-cultural attachment, to negotiate state marine territorialisation processes. Drawing on a case study on the Pacific coast of Colombia, we demonstrate that Afro-descendant communities hold local aquatic epistemologies, in which knowledge and the production of space are entangled in fluid and volumetric spatio-temporal dynamics. However, despite the social importance of aquatic environments, they were excluded from Afro-descendants' collective territorial rights in the 1990s. Driven by their local aquatic epistemologies, coastal communities are reclaiming authority over the seascape through the creation of a marine protected area. We argue that they have transformed relations of authority at sea to ensure local access and control, using state institutional instruments to subvert and challenge the legal framing of the sea as an open access public good. As such, this marine protected area represents a place of resistance that ironically subjects coastal communities to disciplinary technologies of conservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...