ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Arctic
  • Electronic structure and strongly correlated systems
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (2)
Collection
  • Articles  (2)
Keywords
Publisher
Years
Topic
  • 1
    ISSN: 1573-5036
    Keywords: Arctic ; Cerastium alpinum ; nitrogen source ; nitrogen-uptake ; organic N ; polar-desert plants ; Saxifraga caespitosa ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Polar-desert plants experience low average air temperatures during their short growing season (4–8 °C mean July temperature). In addition, low availability of inorganic nitrogen in the soil may also limit plant growth. Our goals were to elucidate which N sources can be acquired by polar-desert plants, and how growth and N-uptake are affected by low growth temperatures. We compared rates of N-uptake and increases in mass and leaf area of two polar-desert species (Cerastium alpinum L. and Saxifraga caespitosa L.) over a period of 3 weeks when grown at two temperatures (6 °C vs. 15 °C) and supplied with either glycine, NH4 + or NO3 −. At 15 °C, plants at least doubled their leaf area, whereas there was no change in leaf area at 6 °C. Measured mean N-uptake rates varied between 0.5 nmol g−1 root DM s−1 on glycine at 15 °C and 7.5 nmol g−1 root DM s−1 on NH4 + at 15 °C. Uptake rates based upon increases in mass and tissue N concentrations showed that plants had a lower N-uptake rate at 6 °C, regardless of N source or species. We conclude that these polar-desert plants can use all three N sources to increase their leaf area and support flowering when grown at 15 °C. Based upon short-term (8 h) uptake experiments, we also conclude that the short-term capacity to take up inorganic or organic N is not reduced by low temperature (6 °C). However, net N-uptake integrated over a three-week period is severely reduced at 6 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Arctic ; Astragalus ; Legumes ; Numerical analysis ; Oxytropis ; Rhizobium ; Symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forty-eight strains of rhizobia were isolated from the root nodules ofAstragalus alpinus (21),Oxytropis maydelliana (19) andOxytropis arctobia (8), three species of arctic legumes found in the Melville Peninsula, Northwest Territories, Canada. On the basis of 74 characteristics (cultural, physiological, biochemical and host nodulation range) the 48 arctic rhizobia could be divided into 11 distinct groups by numerical analysis techniques. All 48 arctic rhizobia were able to nodulate the three arctic legume species and also sainfoin (Onobrychis viciifolia), however, milkvetch (Astragalus cicer) was only nodulated by 33 strains. In general, the arctic rhizobia showed properties found in both Rhizobium and Bradyrhizobium. The adaptation of the arctic strains to low temperature is indicated by their ability to grow in liquid culture at 5°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...