ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9,828)
  • Other Sources  (12)
  • Arctic
  • Electronic structure and strongly correlated systems
Collection
  • Books  (36)
  • Articles  (9,828)
  • Data  (1)
  • Other Sources  (12)
Keywords
Language
Journal
  • 1
    Publication Date: 2024-03-22
    Description: We present high‐resolution profiles of dissolved, labile, and total particulate trace metals (TMs) on the Northeast Greenland shelf from GEOTRACES cruise GN05 in August 2016. Combined with radium isotopes, stable oxygen isotopes, and noble gas measurements, elemental distributions suggest that TM dynamics were mainly regulated by the mixing between North Atlantic‐derived Intermediate Water, enriched in labile particulate TMs (LpTMs), and Arctic surface waters, enriched in Siberian shelf‐derived dissolved TMs (dTMs; Co, Cu, Fe, Mn, and Ni) carried by the Transpolar Drift. These two distinct sources were delineated by salinity‐dependent variations of dTM and LpTM concentrations and the proportion of dTMs relative to the total dissolved and labile particulate ratios. Locally produced meltwater from the Nioghalvfjerdsbræ (79NG) glacier cavity, distinguished from other freshwater sources using helium excess, contributed a large pool of dTMs to the shelf inventory. Localized peaks in labile and total particulate Cd, Co, Fe, Mn, Ni, Cu, Al, V, and Ti in the cavity outflow, however, were not directly contributed by submarine melting. Instead, these particulate TMs were mainly supplied by the re‐suspension of cavity sediment particles. Currently, Arctic Ocean outflows are the most important source of dFe, dCu, and dNi on the shelf, while LpTMs and up to 60% of dMn and dCo are mainly supplied by subglacial discharge from the 79NG cavity. Therefore, changes in the cavity‐overturning dynamics of 79NG induced by glacial retreat, and alterations in the transport of Siberian shelf‐derived materials with the Transport Drift may shift the shelf dTM‐LpTM stoichiometry in the future.
    Description: Plain Language Summary: Trace metals (TMs) including cobalt (Co), iron (Fe), manganese (Mn), copper (Cu), and nickel (Ni) are essential micronutrients for marine productivity. The Northeast Greenland shelf is a climatically sensitive region, influenced by both outflowing Arctic waters and local glacier melting. We lack knowledge on how these Arctic surface waters affect TM dynamics on the Greenland shelf and how climatic shifts may influence TM dynamics. Here, we distinguish local submarine meltwater from Arctic surface waters using distinct tracers; noble gases and radium isotopes. We show that the TM dynamics on the shelf are largely controlled by the intrusion of Arctic surface waters which creates a near‐surface plume of dissolved and labile particulate TMs. Conversely, submarine meltwater creates a subsurface plume enriched in dissolved TMs but depleted in particulate TMs, which is exported from underneath a floating ice tongue. In the future, increasing Arctic river discharge and local glacial melting may both significantly change shelf micronutrient ratios demonstrating downstream impacts of a changing cryosphere on marine biogeochemical cycles.
    Description: Key Points: The overall dissolved and particulate trace metal (TM) dynamics were mainly regulated by the mixing with Arctic surface waters. Resuspension of cavity sediments is a major localized source of labile and total particulate Cd, Co, Fe, Mn, Ni, Cu, Al, V, and Ti. Whilst dissolved and particulate TMs are mostly coupled on the Greenland shelf, cavity outflow decouples both phases.
    Description: Kuwait Institute for Scientific Research
    Description: Deutsche Forschungsgemeinschaft
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871030
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871030
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871028
    Description: https://doi.pangaea.de/10.1594/PANGAEA.905347
    Description: https://doi.pangaea.de/10.1594/PANGAEA.933431
    Description: https://doi.pangaea.de/10.1594/PANGAEA.948466
    Description: https://doi.pangaea.de/10.1594/PANGAEA.936029
    Description: https://doi.pangaea.de/10.1594/PANGAEA.936027
    Description: https://doi.org/10.1594/PANGAEA.931336
    Keywords: ddc:551.9 ; Arctic ; trace metals ; labile particulate ; glacier ; meltwater ; GEOTRACES
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We quantify sea ice concentration (SIC) changes related to synoptic cyclones separately for each month of the year in the Greenland, Barents and Kara Seas for 1979–2018. We find that these SIC changes can be statistically significant throughout the year. However, their strength varies from region to region and month to month, and their sign strongly depends on the considered time scale (before/during vs. after cyclone passages). Our results show that the annual cycle of cyclone impacts on SIC is related to varying cyclone intensity and traversed sea ice conditions. We further show that significant changes in these cyclone impacts have manifested in the last 40 years, with the strongest changes occurring in October and November. For these months, SIC decreases before/during cyclones have more than doubled in magnitude in the Barents and Kara Seas, while SIC increases following cyclones have weakened (intensified) in the Barents Sea (Kara Sea).〈/p〉
    Description: Plain Language Summary: We study how the sea ice cover in the Arctic Ocean changes due to the passage of low‐pressure systems (cyclones). Our study covers all years between 1979 and 2018 and each individual month of the year. Our results show that the passage of cyclones can affect the sea ice year around, but the strength and the sign (less or more sea ice concentration due to cyclones) of this impact varies strongly. These variations in cyclone impacts throughout the year are related to variations in the strength of the cyclones and changes in the state of the sea ice cover (e.g., thinner vs. thicker ice). We further show that the cyclone impact on the Arctic sea ice has changed during the last 40 years. These changes are strongest in autumn, particularly in October and November. In these months, the strength of the destructive cyclone impacts on sea ice has more than doubled in some regions of the Arctic compared to previous times. In some regions, however, also the strength of ice preserving cyclone impacts (more sea ice due to cyclones) has intensified recently.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Cyclones can significantly impact the sea ice in the Atlantic Arctic in all months of the year, but with strong spatiotemporal variations〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Impacts are stronger in the cold season than in summer due to variations in cyclone intensity and traversed sea ice conditions〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Significant changes emerged throughout the year, recently strongest in the Barents Sea in autumn due to a reduced mean ice concentration〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Description: https://doi.org/10.24381/cds.adbb2d47
    Description: https://www.cen.uni-hamburg.de/icdc/data/ocean/easy-init-ocean/ecmwf-oras5.html
    Keywords: ddc:551.5 ; cyclones ; sea ice ; Arctic ; atmosphere‐sea ice interactions ; climate change
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-17
    Description: Concentrations of the toxic element lead (Pb) are elevated in seawater due to historical emissions. While anthropogenic atmospheric emissions are the dominant source of dissolved Pb (dPb) to the Atlantic Ocean, evidence is emerging of a natural source associated with subglacial discharge into the ocean but this has yet to be constrained around Greenland. Here, we show subglacial discharge from the cavity underneath Nioghalvfjerdsbræ floating ice tongue, is a previously unrecognized source of dPb to the NE Greenland Shelf. Contrasting cavity‐inflowing and cavity‐outflowing waters, we constrain the associated net‐dPb flux as 2.2 ± 1.4 Mg·yr−1, of which ∼90% originates from dissolution of glacial bedrock and cavity sediments. We propose that the retreat of the floating ice tongue, the ongoing retreat of many glaciers on Greenland, associated shifts in sediment dynamics, and enhanced meltwater discharges into shelf waters may result in pronounced changes, possibly increases, in net‐dPb fluxes to coastal waters.
    Description: Plain Language Summary: Lead (Pb) is a toxic element. Hundreds of thousands of tons have historically been emitted into the atmosphere through use of leaded gasoline, ore‐smelting and coal‐combustion which led to large‐scale deposition of Pb into the ocean and onto the Greenland Ice Sheet. Since the phase‐out of leaded gasoline, concentrations of dissolved Pb in the surface ocean have declined, increasing the relative importance of other, natural sources of Pb to the marine environment. In 2016, we conducted a survey near Nioghalvfjerdsbræ, one of Greenland’s largest marine‐terminating glaciers, to investigate if Greenland Ice Sheet discharge is a source of Pb to the Northeast Greenland Shelf. We observed elevated dissolved Pb concentrations at intermediate depths within a ⁓60 km radius downstream of the Nioghalvfjerdsbræ terminus. The Pb enrichment originates from underneath the glacier’s floating ice tongue. Lead sources underneath Nioghalvfjerdsbræ likely include Pb from eroded bedrock and exchange with fjord sediments. Our calculations suggest that Nioghalvfjerdsbræ dissolved Pb discharge is comparable to that from small Arctic rivers. Given the widespread occurance of Pb‐rich minerals across Greenland, observed increases in meltwater discharge and the retreat of marine‐terminating glaciers could increase dPb supply to Greenlandic shelf regions.
    Description: Key Points: Helium and neon show strong evidence for a subglacial source of Pb discharging onto the NE Greenland Shelf. Contrasting inflowing and outflowing waters beneath the floating ice tongue of Nioghalvfjerdsbræ shows a 2‐3‐fold dPb enrichment. The dissolved Pb flux from Nioghalvfjerdsbræ (2.2 ± 1.4 Mg·yr−1) is comparable to small Arctic rivers, with ∼90% of a sedimentary origin.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Kuwait Institute for Scientific Research http://dx.doi.org/10.13039/501100005074
    Description: Swiss Polar Foundation
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871028
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871030
    Description: https://doi.pangaea.de/10.1594/PANGAEA.879197
    Description: https://doi.pangaea.de/10.1594/PANGAEA.905347
    Description: https://doi.pangaea.de/10.1594/PANGAEA.933431
    Description: https://doi.pangaea.de/10.1594/PANGAEA.931336
    Description: https://doi.org/10.5194/essd-8-543-2016
    Keywords: ddc:551 ; Greenland ice sheet ; Arctic ; marine‐terminating glacier ; Nioghalvfjerdsbrae ; lead fluxes ; GEOTRACES
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-05
    Description: In situ profiles and fixed-altitude time series of all four components of net radiation were obtained at Ny-Ålesund, Svalbard (78.9° N, 11.9° E), in the period May 04–21, 2015. Measurements were performed using adapted high-quality instrumentation classified as “secondary standard” carried by a tethered balloon system. Balloon-lifted measurements of albedo under clear-sky conditions demonstrate the local dependence on altitude and on the surface inhomogeneity of this parameter over coastal terrain of Ny-Ålesund. Depending on the surface composition within the sensor’s footprint near the coastline, the albedo over predominantly snow-covered surfaces was found to decrease to 0.548 and 0.452 at 494 m and 881 m altitude compared with 0.731 and 0.788 measured with near-surface references, respectively. Albedo profiles show an all-sky maximum at 150 m above surface level due to local surface inhomogeneity, and an averaged vertical change rate of − 0.040/100 up to 750 m aboveground level (clear sky) and − 0.034/100 m (overcast). Profiling of arctic low-level clouds reveals distinct vertical gradients in all radiative fluxes but longwave upward at the cloud top. Observed radiative cooling at the top of a partly dissolving stratus cloud with heating rates of − 40.4 to − 62.1 Kd−1 in subsequent observations is exemplified.
    Description: Bundesrepublik Deutschland, Deutscher Wetterdienst, vertreten durch den Vorstand, Deutsche Meteorologische Bibliothek (4242)
    Keywords: ddc:551.5 ; Atmosphere ; Arctic ; In-situ profiling ; Albedo ; Clouds ; Heating rates
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-30
    Description: Boreal fires have increased during the last years and are projected to become more intense and frequent as a consequence of climate change. Wildfires produce a wide range of effects on the Arctic climate and ecosystem, and understanding these effects is crucial for predicting the future evolution of the Arctic region. This study focuses on the impact of the long-range transport of biomass-burning aerosol into the atmosphere and the corresponding radiative perturbation in the shortwave frequency range. As a case study, we investigate an intense biomass-burning (BB) event which took place in summer 2017 in Canada and subsequent northeastward transport of gases and particles in the plume leading to exceptionally high values (0.86) of Aerosol Optical Depth (AOD) at 500 nm measured in northwestern Greenland on 21 August 2017. This work characterizes the BB plume measured at the Thule High Arctic Atmospheric Observatory (THAAO; 76.53∘N, 68.74∘W) in August 2017 by assessing the associated shortwave aerosol direct radiative impact over the THAAO and extending this evaluation over the broader region (60∘N–80∘N, 110∘W–0∘E). The radiative transfer simulations with MODTRAN6.0 estimated an aerosol heating rate of up to 0.5 K/day in the upper aerosol layer (8–12 km). The direct aerosol radiative effect (ARE) vertical profile shows a maximum negative value of −45.4 Wm−2 for a 78∘ solar zenith angle above THAAO at 3 km altitude. A cumulative surface ARE of −127.5 TW is estimated to have occurred on 21 August 2017 over a portion (∼3.1×106 km2) of the considered domain (60∘N–80∘N, 110∘W–0∘E). ARE regional mean daily values over the same portion of the domain vary between −65 and −25 Wm−2. Although this is a limited temporal event, this effect can have significant influence on the Arctic radiative budget, especially in the anticipated scenario of increasing wildfires.
    Description: This research was partially funded by the Italian Ministry of University and Research (MIUR) within the framework of OASIS-YOPP—Observations of the Arctic Stratosphere In Support of YOPP (PNRA 2016–2018); CLARA2—CLouds And Radiation in the Arctic and Antarctica (PNRA 2019–2021), and ECAPAC—Effects of changing albedo and precipitation on the Arctic climate (PRA 2021–2023). The work of F. Calì Quaglia and G. Muscari was also partially funded under the INGV environmental project MACMAP—A Multidisciplinary Analysis of Climate change indicators in the Mediterranean And Polar regions (2020–2023). The NCAR FTIR observation program at Thule, Greenland is supported under contract by the National Aeronautics and Space Administration (NASA). The National Center for Atmospheric Research (NCAR) is sponsored by the U.S. National Science Foundation (NSF). The Thule work is also supported by the NSF Office of Polar Programs (OPP).
    Description: Published
    Description: 313
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: biomass-burning (BB) ; wildfires ; Arctic ; aerosol radiative effect ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-21
    Description: A reconstruction of the last 2,000 years BP of environmental and oceanographic changes on the western margin of Spitsbergen was performed using a multidisciplinary approach including the fossil assemblages of diatoms, planktic and benthic foraminifera and calcareous nannofossils and the use of geochemistry (X-ray fluorescence spectroscopy, X-ray diffraction). We identified two warm periods (2,000–1,600 years BP and 1,300–700 years BP) that were associated with the Roman Warm Period and the Medieval Warm Period that alternate with colder oceanic conditions and sea ice coverage occurred during the Dark Ages (1,600–1,300 years BP) and the beginning of the Little Ice Age. During the Medieval Warm Period the occurrence of ice-rafted debris and Aulocoseira spp., a specific diatom genus commonly associated with continental freshwater, suggests significant runoff of meltwaters from local glaciers.
    Description: Published
    Description: 562–583
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: Micropaleontology ; Sedimentology ; Arctic ; Svalbard ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2022.
    Description: This thesis encompasses an analysis of underwater ambient noise collected by the yearlong Canada Basin Acoustic Propagation Experiment (CANAPE) on the Chukchi Shelf of the Arctic. This location contained the Beaufort Duct, a significant effect of climate change on the Arctic’s underwater soundscape. A study of the statistical and probability metrics was conducted on a frequency band of 50-1900 Hz to examine the relation between environmental drivers and noise patterns. The presence of ice typically decreases broadband ambient noise, when compared to ice-free seas. However, the Beaufort Duct under ice increases the ambient noise levels below 1 kHz. The relationship between ambient noise and the environment is further explored by studying the link between distant ice movements and ambient levels Correlation between the two is found to exist from 300-1500 Hz, as distant ( 500 km) ice drift motion appears to drive noise levels at the receiver.
    Description: Funding sources include the US Navy and Office of Naval Research.
    Keywords: Arctic ; Ambient ; Noise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Baillargeon, N., Lepe, A., Rastetter, E. B., & Sistla, S. A. Warming effects on arctic tundra biogeochemistry are limited but habitat-dependent: a meta-analysis. Ecosphere, 12(10), (2021): e03777, https://doi.org/10.1002/ecs2.3777.
    Description: Arctic tundra consists of diverse habitats that differ in dominant vegetation, soil moisture regimes, and relative importance of organic vs. inorganic nutrient cycling. The Arctic is also the most rapidly warming global area, with winter warming dominating. This warming is expected to have dramatic effects on tundra carbon and nutrient dynamics. We completed a meta-analysis of 166 experimental warming study papers to evaluate the hypotheses that warming changes tundra biogeochemical cycles in a habitat- and seasonally specific manner and that the carbon (C), nitrogen (N), and phosphorus (P) cycles will be differentially accelerated, leading to decoupling of elemental cycles. We found that nutrient availability and plant leaf stoichiometry responses to experimental warming were variable and overall weak, but that both gross primary productivity and the plant C pool tended to increase with growing season warming. The effects of winter warming on C fluxes did not extend into the growing season. Overall, although warming led to more consistent increases in C fluxes compared to N or P fluxes, evidence for decoupling of biogeochemical cycles is weak and any effect appears limited to heath habitats. However, data on many habitats are too sparse to be able to generalize how warming might decouple biogeochemical cycles, and too few year-round warming studies exist to ascertain whether the season under which warming occurs alters how ecosystems respond to warming. Coordinated field campaigns are necessary to more robustly document tundra habitat-specific responses to realistic climate warming scenarios in order to better understand the mechanisms driving this heterogeneity and identify the tundra habitats, communities, and soil pools most susceptible to warming.
    Description: Funding for this project was provided by NSF Signals in the Soil grant number 1841610 to SAS and ER. SAS and ER conceived of and acquired funding for the project. NB completed the literature search.
    Keywords: Arctic ; Biogeochemistry ; Climate change ; Experimental warming ; Meta-analysis ; Stoichiometry ; Tundra
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stunz, E., Fetcher, N., Lavretsky, P., Mohl, J., Tang, J., & Moody, M. Landscape genomics provides evidence of ecotypic adaptation and a barrier to gene flow at treeline for the arctic foundation species Eriophorum vaginatum. Frontiers in Plant Science, 13, (2022): 860439, https://doi.org/10.3389/fpls.2022.860439.
    Description: Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth’s land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes. Tussock cottongrass (Eriophorum vaginatum L.) is a foundation species of the moist acidic tundra, whose potential decline due to competition from shrubs may affect ecosystem stability in the Arctic. We used double-digest Restriction Site-Associated DNA sequencing to identify genomic variation in 273 individuals of E. vaginatum from 17 sites along a latitudinal gradient in north central Alaska. These sites have been part of 30 + years of ecological research and are inclusive of a region that was part of the Beringian refugium. The data analyses included genomic population structure, demographic models, and genotype by environment association. Genome-wide SNP investigation revealed environmentally associated variation and population structure across the sampled range of E. vaginatum, including a genetic break between populations north and south of treeline. This structure is likely the result of subrefugial isolation, contemporary isolation by resistance, and adaptation. Forty-five candidate loci were identified with genotype-environment association (GEA) analyses, with most identified genes related to abiotic stress. Our results support a hypothesis of limited gene flow based on spatial and environmental factors for E. vaginatum, which in combination with life history traits could limit range expansion of southern ecotypes northward as the tundra warms. This has implications for lower competitive attributes of northern plants of this foundation species likely resulting in changes in ecosystem productivity.
    Description: This research was made possible by funding provided by NSF/PLR-1417645 to MM. The Botanical Society of America Graduate Student Research Award and the Dodson Research Grant from the Graduate School of the University of Texas at El Paso provided assistance to ES. The grant 5U54MD007592 from the National Institute on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH) provided bioinformatics resources and support of JM.
    Keywords: Arctic ; Climate change ; Eriophorum vaginatum ; Landscape genomics ; Environmental niche modeling ; Genotype-environment association analyses ; Refugia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kropp, H., Loranty, M. M., Natali, S. M., Kholodov, A. L., Rocha, A., V., Myers-Smith, I., Abbot, B. W., Abermann, J., Blanc-Betes, E., Blok, D., Blume-Werry, G., Boike, J., Breen, A. L., Cahoon, S. M. P., Christiansen, C. T., Douglas, T. A., Epstein, H. E., Frost, G., V., Goeckede, M., Hoye, T. T., Mamet, S. D., O'Donnell, J. A., Olefeldt, D., Phoenix, G. K., Salmon, V. G., Sannel, A. B. K., Smith, S. L., Sonnentag, O., Vaughn, L. S., Williams, M., Elberling, B., Gough, L., Hjort, J., Lafleur, P. M., Euskirchen, E. S., Heijmans, M. M. P. D., Humphreys, E. R., Iwata, H., Jones, B. M., Jorgenson, M. T., Gruenberg, I., Kim, Y., Laundre, J., Mauritz, M., Michelsen, A., Schaepman-Strub, G., Tape, K. D., Ueyama, M., Lee, B., Langley, K., & Lund, M. Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems. Environmental Research Letters, 16(1), (2021): 015001. doi:10.1088/1748-9326/abc994.
    Description: Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (〉40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
    Description: We thank G Peter Kershaw, LeeAnn Fishback, Cathy Wilson, and Coleen Iversen for assistance in collection of data. We thank the Permafrost Carbon Network for support and organization of the data synthesis. We thank Vladimir Romanovsky for his feedback and contribution of publicly available data. This project was supported by the National Science Foundation (Grant No. 1417745 to M L, Grant No. 1417700 to S M N, Grant No. 1417908 to A K, Grant No. 1556772 to A R, Grant No. 1637459 to L G, Grant No. 1636476 and Grant No. 1503912 to E S E, Grant No. 1806213 to B M J, Grant No. 1833056 to K D T), UK Natural Environment Research Council (Grant No. NE/M016323/1 to I H M S, Grant No. NE/K00025X/1 to G K P, Grant No. NE/K000292/1 to M W), Natural Sciences and Engineering Research (to P L, I H M S, Grant No. RGPIN-2016-04688 to D O), Council of Canada, Canadian Graduate Scholarship to (I H M -S), Greenland Ecosystem Monitoring Programme: ClimateBasis (to J A and K A), The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science (to A L B), Engineer Research and Development Center Army Direct (6.1) Research Program and the Strategic Environmental Research and Development Program (projects RC-2110 and 18-1170 to T A D), United States Geological Survey (to E E S), Arctic Challenge for Sustainability (ArCS; Grant No. JPMXD1300000000) and ArCS II (Grant No. JPMXD1420318865) (to M U and H I), the Danish National Research Foundation (Grant No. CENPERM DNRF100 to B E), the Academy of Finland (Grant No. 315519), the National Research Foundation of Korea (Grant Nos. NRF-2016M1A5A1901769; KOPRI-PN20081 to K Y and B Y L), Research Network for Geosciences in Berlin and Potsdam (to I G), the Swiss National Science Foundation (Grant No. 140631 to G S S), the URPP Global Change and Biodiversity, University of Zurich (to G S S), the University of Alberta Northern Research Awards (to D O), and the Northern Scientific Training Program (to D O), and UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) Office of Science, Biological and Environmental Research (to V G S). S M has been supported by grants and/or in-kind from Natural Sciences and Engineering Research Council of Canada, AMAX Northwest Mining, Co. (North American Tungsten Corp., Ltd), Imperial Oil, Ltd, University of Alberta, Earthwatch International (EI), The Garfield Weston Foundation, Wapusk National Park, Churchill Northern Studies Centre, and the Northern Scientific Training Program. All code for this project are archived (DOI: 10.5281/zenodo.4041165). The data that support the findings of this study are openly available through the Arctic Data Center (Heather Kropp, Michael Loranty, Britta Sannel, Jonathan O'Donnell, Elena Blanc-Betes, et al 2020. Synthesis of soil-air temperature and vegetation measurements in the pan-Arctic. 1990-2016. Arctic Data Center. doi:10.18739/A2736M31X).
    Keywords: Arctic ; Boreal forest ; Soil temperature ; Vegetation change ; Permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...