ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous  (21)
  • 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
  • Seismological Society of America  (22)
  • Nature Publishing Group
Collection
Years
  • 1
    Publication Date: 2021-06-25
    Description: We adopt a spectral-element method (SEM) to perform numerical simulations of the complex wavefield generated by the 6 April 2009 Mw 6.3 L’Aquila earthquake in central Italy. The mainshock is represented by a finite-fault solution obtained by inverting strong-motion and Global Positioning System data, testing both 1D and 3D wavespeed models for central Italy. Surface topography, attenuation, and the Moho discontinuity are also accommodated. Including these complexities is essential to accurately simulate seismic-wave propagation. Three-component synthetic waveforms are compared to corresponding velocimeter and strong-motion recordings. The results show a favorable match between data and synthetics up to ∼0:5 Hz in a 200 km × 200 km × 60 km model volume, capturing features mainly related to topography or low-wavespeed basins. We construct synthetic peak ground velocity maps that, for the 3D model, are in good agreement with observations, thus providing valuable information for seismic-hazard assessment. Exploiting the SEM in combination with an adjoint method, we calculate finite-frequency kernels for specific seismic arrivals. These kernels capture the volumetric sensitivity associated with the selected waveform and highlight prominent effects of topography on seismic-wave propagation in central Italy.
    Description: Published
    Description: JCR Journal
    Description: restricted
    Keywords: Wave Propagation ; Earthquake ; Ground Motion ; Basin & Site Effects ; Topographic Effects ; Numerical Modelling ; Spectral-Element Methods ; Adjoint Methods ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty. Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. In the present study, we develop a method of seismic location based on a set of well located events recorded by the dense national seismic network in a seismically active region of central Japan. We show that mislocations of the order of 10-20 km affecting the epicenters calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying station-source-specific corrections. The results show a clear correlation of the travel time residuals with the subduction structure beneath Japan.
    Description: Published
    Description: 225-236
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Travel-time correction ; Teleseimic location ; Seismic monitoring and test-ban treaty verification. ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-05
    Description: New duration-based local (ML) and moment (Mw) magnitude scales are obtained for the Campi Flegrei area through analysis of a dataset of local volcanotectonic earthquakes. First, the S-wave quality factor for the investigated area was experimentally calculated, and then the distance-correction curve, log A0(r), to be used in the Richter formula ML = log Amax − log A0(r), was numerically estimated by measuring the attenuation properties and, hence, propagating a synthetic S-wave packet in the earth medium. The local magnitude scale was normalized to fit the Richter formula that was valid for Southern California at a distance of 10 km. ML was estimated by synthesizing Wood–Anderson seismograms and measuring the maximum amplitude. For the same dataset, the moment magnitude was obtained from S-wave distance-corrected and site-corrected displacement spectra. Comparisons between local and moment magnitudes determined, along with the old duration magnitude (MD) routinely used at the Istituto Nazionale di Geofisica e Vulcanologia– Osservatorio Vesuviano, are presented and discussed. Moreover, the relationships between ML and Mw calculated for two reference sites are also derived.
    Description: Published
    Description: 1964-1974
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: magnitude ; Campi Flegrei ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The spatial distribution of 414 earthquakes (1.0 ≤ ML ≤ 4.6), recorded from 1994 to 2002 in Southeastern Sicily (Italy), has been analyzed; it generally coincides with mapped Plio-Quaternary faults, including the NNW-SSE offshore fault system which is the most important tectonic structure of the area. For the best located events, we computed 70 focal mechanisms by combining P-wave polarities with S-wave polarizations. A predominance of strike-slip and normal faults was observed. Focal mechanisms were then inverted for stress tensor parameters using the algorithm of Gephart and Forsyth. The results highlighted a region governed mainly by a compressional stress regime. Moreover, anisotropy analysis of shear-waves showed a polarization of fast S-waves prevalently aligned in the NNW-SSE to NW-SE direction over the whole area. A finer analysis of stress tensor evidenced three regions characterized by slightly differing orientation of the greatest principal stress axis, 1. The eastern sector displays a nearly horizontal 1 trending NW-SE; the central sector is affected by a low dip NNW-SSE 1; whereas in the western sector a 1 NNW-SSE oriented, with a higher dip angle, was detected. Finally, the comparison of the spatial distribution of seismicity occurring during 1994-2002, with locations of previous instrumental earthquakes and larger (M ≥ 5.0) historical events showed that the seismic patterns are persistent.
    Description: Published
    Description: 1359–1374
    Description: JCR Journal
    Description: reserved
    Keywords: Stress direction ; focal mechanisms ; Shear-Wave Anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: This study investigates the engineering applicability of two conceptually different finite-fault simulation techniques. We focus our attention on two important aspects: first to quantify the capability of the methods to reproduce the observed ground-motion parameters (peaks and integral quantities); second to quantify the dependence of the strong-motion parameters on the variability in the large-scale kinematic definition of the source (i.e. position of nucleation point, value of the rupture velocity and distribution of the final slip on the fault). We applied an approximated simulation technique, the Deterministic-Stochastic Method DSM, and a broadband technique, the Hybrid-Integral-Composite method HIC, to model the 1984 Mw 5.7 Gubbio, central Italy, earthquake, at 5 accelerometric stations. We first optimize the position of nucleation point and the value of rupture velocity for three different final slip distributions on the fault by minimizing an error function in terms of acceleration response spectra in the frequency band from 1 to 9 Hz. We found that the best model is given by a rupture propagating at about 2.65 km/s from a hypocenter located approximately at the center of the fault. In the second part of the paper we calculate more than 2400 scenarios varying the kinematic source parameters. At the five sites we compute the residuals distributions for the various strong-motion parameters and show that their standard deviations depend on the source-parameterization adopted by the two techniques. Furthermore, we show that, Arias Intensity and significant duration are characterized by the largest and smallest standard deviation, respectively. Housner Intensity results better modeled and less affected by uncertainties in the source kinematic parameters than Arias Intensity. The fact that the uncertainties in the kinematic model affects the variability of different ground-motion parameters in different ways has to be taken into account when performing hazard assessment and earthquake engineering studies for future events.
    Description: In press
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: ground-motion simulation ; Gubbio 1984 ; ground-motion variability ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The analysis of the seismic attenuation is a prominent and problematic component of hazard assessment. Over the last decade it has become increasingly clear that the intrinsic uncertainty of the decay process must be expressed in probabilistic terms. This implies estimating the probability distribution of the intensity at a site Is as the combination of the distribution of the decay DI and of the distribution of the intensity I0 found for the area surrounding that site. We focus here on the estimation of the distribution of DI. Previous studies presented in the literature show that the intensity decay in Italian territory varies greatly from one region to another, and depends on many factors, some of them not easily measurable. Assuming that the decay shows a similar behavior in function of the epicenter-site distance when the same geophysical conditions and building vulnerability characterize different macroseismic fields, we have classified some macroseismic fields drawn from the Italian felt report database by applying a clustering algorithm. Earthquakes in the same class constitute the input of a two-step procedure for the Bayesian estimation of the probability distribution of I at any distance from the epicenter, conditioned on I0, where DI is considered an integer, random variable, following a binomial distribution. The scenario generated by a future earthquake is forecast either by the predictive distribution in each distance bin, or by a binomial distribution whose parameter is a continuous function of the distance. The estimated distributions have been applied to forecast the scenario actually produced by the Colfiorito earthquake on 1997/09/26; for both options the expected and observed intensities have been compared on the basis of some validation criteria. The same procedure has been repeated using the probability distribution of DI estimated on the basis of each class of macroseismic fields identified by the clustering algorithm.
    Description: Published
    Description: 2876-2892
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Macroseismic fields ; Probability Distribution of the Intensity at Site ; Attenuation trends ; Colfiorito 1997 earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This study investigates the engineering applicability of two conceptually different finite-fault simulation techniques. We focus our attention on two important aspects: first to quantify the capability of the methods to reproduce the observed ground-motion parameters (peaks and integral quantities); second to quantify the dependence of the strong-motion parameters on the variability in the large-scale kinematic definition of the source (i.e., position of the nucleation point, value of the rupture velocity, and distribution of the final slip on the fault). We applied an approximated simulation technique, the deterministic-stochastic method and a broadband technique, the hybrid-integral-composite method, to model the 1984 Mw 5.7 Gubbio, central Italy, earthquake, at five accelerometric stations. We first optimize the position of the nucleation point and the value of the rupture velocity for three different final slip distributions on the fault by minimizing an error function in terms of acceleration response spectra in the frequency band from 1 to 9 Hz. We found that the best model is given by a rupture propagating at about 2:65 km=sec from a hypocenter located approximately at the center of the fault. In the second part of the article we calculate more than 2400 scenarios varying the kinematic source parameters. At the five sites we compute the residuals distributions for the various strongmotion parameters and show that their standard deviations depend on the source parameterization adopted by the two techniques. Furthermore, we show that Arias Intensity (AI) and significant duration are characterized by the largest and smallest standard deviation, respectively. Housner Intensity is better modeled and less affected by uncertainties in the source kinematic parameters than AI. The fact that the uncertainties in the kinematic model affects the variability of different ground-motion parameters in different ways has to be taken into account when performing hazard assessment and earthquake engineering studies for future events.
    Description: Published
    Description: 647-663
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: ground-motion simulation ; Gubbio 1984 ; ground-motion variability ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: A long sequence of moderate-magnitude earthquakes (5 M 6) struck central Italy in September and October 1997. At the end of the sequence a year later, the seismogenic area extends for about 60 km along the Apennines. The analysis of historical seismicity suggests that this seismic sequence filled a 700-year gap in this portion of the chain. Other historical sequences in the same area are characterized by prolonged seismic release on adjacent fault segments, probably due to the involvement of shallow and complex structures inherited by the compressive tectonics. The distribution of seismicity and the fault-plane solutions show that the extension in this region is accomplished by normal faults dipping at relatively low angles ( 40 ) to the southwest. The focal mechanisms of the largest shocks reveal normal faulting with extension perpendicular to the Apenninic chain (northeast–southwest), consistently with the Quaternary tectonics of the internal sector of the northern Apennine belt and with previous earthquakes in adjacent regions. Three mainshocks occurred on distinct 5- to 10-km-long fault segments, adjacent and slightly offset between each other. High-quality aftershock locations show that seismicity is confined within the sedimentary Mesozoic cover in the upper 8 km of the crust and that most of the aftershocks are shallower than the largest shocks, which nucleated at 6-km depth. Faults evidenced by aftershock locations have a planar geometry and show increased complexity toward the surface. Most of the aftershock focal mechanisms are dominated by normal faulting. Several strike-slip events occurred at shallow depths, reactivating portions of pre-existing thrust planes that segment the normal fault system. The spatiotemporal evolution of seismicity shows a peculiar migration of hypocenters along the strike of the main faults with multiple ruptures and the activation of fault segments before the occurrence of the main rupture episodes.
    Description: Published
    Description: 99-116
    Description: reserved
    Keywords: Seismic ; Sequence ; Central Italy ; Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2909303 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In November 1999 and in January 2000, two microearthquake swarms occurred in Southeastern Sicily (Italy). They were analytically located in the depth range 17-25 km, some kilometers northward from the buried front of a regional foredeep, below the active thrust zone of the Sicily mountain chain. Their hypocentral distribution showed two distinct clusters, and comparison of the waveforms revealed clearly that the two swarms formed two distinct families of multiplet events. This led us: i) to carry out a precise relocation relative to two chosen master events of the families, and ii) to better define the geometrical structure of the two clusters. The cross-spectral method was applied to obtain precise readings of the wave onsets. SH-wave onsets were used instead of P-waves, as they showed clearer onsets and a good signal-to-noise ratio. Residuals of the relative locations showed small values, no more than several meters on average. The vertical extent of the two relocated clusters was 500 m and 250 m, respectively, while the horizontal extent was 250 m. Hypocenters of the first cluster clearly delineate a NNW trending plane with almost vertical dip, matching one nodal plane of the focal mechanism obtained as a composite solution of all events of the cluster. Given the considerable gap angles, because of unfavorable network geometry with respect to the events, the stability of our results was tested carrying out a Montecarlo experiment. Varying the onset times randomly in the range of 5 ms, a dispersion of the locations less than 10 m in longitude, and less than 50 m both in latitude and depth was found. Similar results were obtained when comparing relocations carried out with different master events. Thus, the overall geometrical characteristics of the clusters were not affected seriously by random errors. Considering the geo-structural framework of the region, together with the location and time evolution of the two clusters, fluids of plutonic origin are suggested as the trigger mechanism.
    Description: Published
    Description: 1479–1497
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake swarms ; cross-correlation ; relative location ; master-event technique ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In this paper, we adopt three ground-motion simulation techniques (EXSIM, Motazedian and Atkinson, 2005, DSM, Pacor et al., 2005 and HIC, Gallovič and Brokešová, 2007), with the aim of investigating the different performances in near-fault strong-motion modeling and prediction from past and future events. The test case is the 1980, M 6.9, Irpinia earthquake, the strongest event recorded in Italy. First, we simulate the recorded strong-motion data and validate the model parameters by computing spectral acceleration and peak amplitudes residual distributions. The validated model is then used to investigate the influence of site effects and to compute synthetic ground motions around the fault. Afterward, we simulate the expected ground motions from scenario events on the Irpinia fault, varying the hypocenters, the rupture velocities and the slip distributions. We compare the median ground motions and related standard deviations from all scenario events with empirical ground motion prediction equations (GMPEs). The synthetic median values are included in the median ± one standard deviation of the considered GMPEs. Synthetic peak ground accelerations show median values smaller and with a faster decay with distance than the empirical ones. The synthetics total standard deviation is of the same order or smaller than the empirical one and it shows considerable differences from one simulation technique to another. We decomposed the total standard deviation into its between-scenario and within-scenario components. The larger contribution to the total sigma comes from the latter while the former is found to be smaller and in good agreement with empirical inter-event variability.
    Description: In press
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Irpinia 1980 earthquake ; ground-motion simulation ; ground-motion variability ; scenario events ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...