ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress  (2)
  • Palaeoclimate  (2)
  • 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology  (1)
  • Nature Publishing Group  (3)
  • Blackwell Editor
Collection
Years
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 29587, doi:10.1038/srep29587.
    Description: Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.
    Description: This work was supported by NSF grants EAR0601998, EAR0602355, AGS0402010, ATM0401908, ATM0214525, ATM0096232 and AGS1243125 and a Chevron Centennial Fellowship at the University of Texas at Austin awarded to T.M.S.
    Keywords: Climate-change ecology ; Palaeoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 21728, doi:10.1038/srep21728
    Description: Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
    Description: This research was supported by NSF Awards: OCE-1519578, OCE-1356708, BCS-1118340.
    Keywords: Climate-change impacts ; Forest ecology ; Ocean sciences ; Palaeoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Due to the apparent deformation field heterogeneity, the stress regimes around the Provence block, from the fronts of the Massif Central and Alpine range up to the Ligurian Sea, were not well defined. To improve the understanding of the SE France stress field, we determine new earthquake focal mechanisms and we compute the present-day stress states by inversion of the 89 available focal mechanisms around the Provence domain, including the 17 new ones calculated in the current study. This study provides evidence of 6 different deformation domains around the Provence block with different tectonic regimes. On a regional scale, we identify three zones characterised by significantly different stress regimes: a western one affected by an extensional stress (normal faulting) regime, a southeastern one characterised by a compressional stress (reverse to strike-slip faulting) regime with NNW- to WNW-trending σ1 and a northeastern one, i.e., the Digne nappe front, marked by an NE-trending compression. Note that the Digne nappe back domain is controlled by an extensional regime that is deforming the western alpine core. This extensional regime could be a response to buoyancy forces related to the Alpine high topography. The stress regimes in the southeast of the Argentera Massif and around the Durance fault are consistent with a coherent NNW-trending σ1 that implies a left-lateral component of the active reverse oblique-slip of the Moyenne Durance Fault. In the Rhone Valley, an E-trending extension characterises the tectonic regime that implies a normal component of the present-day Nîmes fault displacement. This study provides evidence for short-scale variation of the stress states that reflect abrupt change in the boundary force influences on upper crustal fragments (blocks). These spatial stress changes around the Provence block result from the coeval influence of forces applied at both its extremities, i.e., in the north-east, the Alpine front push and in the southeast, the northward African plate drift. Besides these boundary forces, the influence of the mantle plume under the Massif Central can be superimposed along the western block boundary.
    Description: Published
    Description: 336-348
    Description: partially_open
    Keywords: Southeastern France ; focal mechanisms ; seismotectonics ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1295312 bytes
    Format: 1755836 bytes
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...