ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
  • Wiley-Blackwell  (5)
  • Birkhauser, Verlag  (1)
  • Nature Publishing Group  (1)
  • SPRINGER  (1)
  • 1
    Publication Date: 2022-06-10
    Description: Earthquake forecasts are usually underinformed, and can be plagued by uncertainty in terms of the most appropriate model, and parameter values used in that model. In this paper, we explore the application of two different models to the same seismogenic area. The first is a renewal model based on the characteristic earthquake hypothesis that uses historical/palaeoseismic recurrence times, and fixed rupture geometries. The hazard rate is modified by the Coulomb static stress change caused by nearby earthquakes that occurred since the latest characteristic earthquake. The second model is a very simple earthquake simulator based on plate-motion, or fault-slip rates and adoption of a Gutenberg–Richter magnitude–frequency distribution. This information is commonly available even if historical and palaeoseismic recurrence data are lacking. The intention is to develop and assess a simulator that has a very limited parameter set that could be used to calculate earthquake rates in settings that are not as rich with observations of large-earthquake recurrence behaviour as the Nankai trough. We find that the use of convergence rate as a primary constraint allows the simulator to replicate much of the spatial distribution of observed segmented rupture rates along the Nankai, Tonankai and Tokai subduction zones. Although we note rate differences between the two forecast methods in the Tokai zone, we also see enough similarities between simulations and observations to suggest that very simple earthquake rupture simulations based on empirical data and fundamental earthquake laws could be useful forecast tools in information-poor settings.
    Description: Published
    Description: 1673-1688
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Time series analysis ; Spatial analysis ; Probability distributions ; Seismic cycle ; Earthquake interaction ; forecasting, and prediction ; Statistical seismology. ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-20
    Description: Our study area is a ~50 km long section of the central-southern Apennines tectonic belt that includes the Pergola-Melandro basin and the Agri valley. This region is located between the areas interested by the 1980 Ms=6.9 Irpinia and the 1857 M=7.0 Val d’Agri earthquakes and is characterized by rare historical events and very low and sparse background seismicity. In this study we provide new seismological and geophysical information to identify the characteristics of the seismotectonics in the area, as the prevailing faulting mechanism and the fit of local to regional stress field. These data concern focal mechanisms from waveform modeling and P-wave polarities, analyses of borehole breakouts and detailed investigation of two seismic sequences. All the data cover a significantly broad range of magnitudes and depths and suggest that no important local variation in stress orientation seems to affect this area, which shows a NE-SW direction of extension consistent with that regionally observed in Southern Italy. Such local homogeneity in the stress field pattern is peculiar of the study area; the variations of orientation and/or type of stress observed in the northern Apennines or only less than 100 km toward the northwest within the same tectonic belt are absent here. Furthermore, there is a suggestion for a northeastward sense of dip of the seismogenic faults in the region, an interesting constraint to the characterization of seismic sources
    Description: Published
    Description: 575-583
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Keywords: faulting ; seismicity ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Natural hazards events such as Earthquakes or volcanic eruptions involve activation of coupled thermo-hydro-chemo-mechanical processes in rocks. The 7th. Euro-conference of Rock Physics and Geomechanics sponsored by the Italian Istituto Nazionale di Geofisica e Vulcanologia (INGV), the French Centre National de Recherche Scientifique (CNRS) and Exon-Mobil, was held on September 25 to 30, 2007, in Erice, Italy, to explore how rock physics experiments and models can help understand and constrain natural hazards mechanisms, and, to foster cross-disciplinary collaborations.
    Description: Published
    Description: 1-3
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: natural hazards, rock physics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2003. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.
    Description: In this study, we modify and extend a data analysis technique to determine the stress orientations between data clusters by adding an additional constraint governing the probability algorithm. We apply this technique to produce a map of the maximum horizontal compressive stress (S_Hmax) orientations in the greater European region (including Europe, Turkey and Mediterranean Africa). Using the World Stress Map dataset release 2008, we obtain analytical probability distributions of the directional differences as a function of the angular distance, θ. We then multiply the probability distributions that are based on pre-averaged data within θ〈3° of the interpolation point and determine the maximum likelihood estimate of the S_Hmax orientation. At a given distance, the probability of obtaining a particular discrepancy decreases exponentially with discrepancy. By exploiting this feature observed in the World Stress Map release 2008 dataset, we increase the robustness of our S_Hmax determinations. For a reliable determination of the most likely S_Hmax orientation, we require that 90% confidence limits be less than ±60° and a minimum of three clusters, which is achieved for 57% of the study area, with small uncertainties of less than ±10° for 7% of the area. When the data density exceeds 0.8×10^-3 data/km2, our method provides a means of reproducing significant local patterns in the stress field. Several mountain ranges in the Mediterranean display 90° changes in the S_Hmax orientation from their crests (which often experience normal faulting) and their foothills (which often experience thrust faulting). This pattern constrains the tectonic stresses to a magnitude similar to that of the topographic stresses.
    Description: This work was supported by the DPC-INGV 2008-2010 S1 project, the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE; Grant agreement no. 226967), and project MIUR-FIRB "Abruzzo" (code: RBAP10ZC8K_003).
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: partially_open
    Keywords: Neotectonics ; Seismicity and tectonics ; Fractures and faults ; Intra-plate processes ; Plate motions ; Dynamics: gravity and tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The goal of this study was to estimate the stress field acting in the Irpinia Region, an area of southern Italy that has been struck in the past by destructive earthquakes and that is now characterized by low to moderate seismicity. The dataset are records of 2,352 aftershocks following the last strong event: the 23 November 1980 earthquake (M 6.9). The earthquakes were recorded at seven seismic stations, on average, and have been located using a three-dimensional (3D) P-wave velocity model and a probabilistic, non-linear, global search technique. The use of a 3D velocity model yielded amore stable estimation of take-off angles, a crucial parameter for focal mechanism computation. The earthquake focal mechanisms were computed from the P-wave first-motion polarity data using the FPFIT algorithm. Fault plane solutions show mostly normal component faulting (pure normal fault and normal fault with a strikeslip component). Only some fault plane solutions show strike-slip and reverse faulting. The stress field is estimated using the method proposed by Michael (J Geophys Res 92:357–368, 1987a) by inverting selected focal mechanisms, and the results show that the Irpinia Region is subjected to a NE–SW extension with horizontal σ3 (plunge 0◦, trend 230◦) and subvertical σ1 (plunge 80◦, trend 320◦), in agreement with the results derived from other stress indicators.
    Description: Published
    Description: 107-124
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Irpinia Region ; Seismicity ; Focal mechanisms ; Stress inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The axial zone of the Apenninic belt in central Italy is a tectonically active region affected by post-orogenic Quaternary extension. The present-day stress field is characterized by a minimum horizontal stress (Shmin) ∼ NE–SW oriented, derived mainly from earthquake focal mechanisms and secondarily from borehole breakouts and fault data. The paper describes the computation of the Shmin orientation along two deep boreholes located in the vicinity of the area hit by the 2009 April 6, Mw 6.3 L’Aquila earthquake. The analysed wells show breakout zones at a depth range between 1.4 and 4.6 km, giving precious information on a depth interval usually not investigated by any other data. The results show an Shmin N81 ± 22◦ and N74 ± 10◦ oriented for Varoni 1 and Campotosto 1 wells, respectively. The comparison among the breakouts, the 2009 seismic sequence, the past seismicity and the Quaternary faults indicates a small rotation of Shmin orientation from ∼ NE, in the southern, to ∼ ENE in the northern sector of the study area, where the wells are located. These differences are linked both to the natural variations of data and to the orientation of the main tectonic structures varying from NW–SE in the Abruzzi region to ∼ N–S moving toward the Umbro-Marchean Apennines. The identification of constant Shmin orientations with depth derived from all the examined active stress data, confirms the breakouts as reliable stress indicators also for aseismic areas.
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity and tectonics ; present-day stress ; borehole breakouts ; Italy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-03
    Description: In this paper, we present a significant update of the Italian present-day stress data compilation not only to improve the knowledge on the tectonic setting of the region or to constrain future geodynamic models, but also to understand the mechanics of processes linked to faulting and earthquakes. In this paper, we have analysed, revised and collected new contemporary stress data from borehole breakouts and we have assembled earthquake and fault data. In total, 206 new quality-ranked entries complete the definition of the horizontal stress orientation and tectonic regime in some areas, and bring new information mainly in Sicily and along the Apenninic belt. Now the global Italian data set consists of 715 data points, including 499 of A–C quality, representing an increase of 37 per cent compared to the previous compilation. The alignment of horizontal stresses measured in some regions, closely matches the ∼N–S first- order stress field orientation of ongoing relative crustal motions between Eurasia and Africa plates. The Apenninic belt shows a diffuse extensional stress regime indicating a ∼NE–SW direction of extension, that we interpret as related to a second-order stress field. The horizontal stress rotations observed in peculiar areas reflect a complex interaction between first-order stress field and local effects revealing the importance of the tectonic structure orientations. In particular, in Sicily the new data delineate a more complete tectonic picture evidencing adjacent areas characterized by distinct stress regime: northern offshore of Sicily and in the Hyblean plateau the alignment of horizontal stresses is consistent with the crustal motions, whereas different directions have been observed along the belt and foredeep.
    Description: Published
    Description: 705–716
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Downhole methods; Seismicity and tectonics; Crustal structure; Europe. ; borehole breakouts, earthquakes, faults ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...