ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (23)
  • Etna  (22)
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (19)
  • American Geophysical Union  (54)
Collection
Years
  • 1
    Publication Date: 2022-04-29
    Description: Petrophysical properties of rocks and their applicability at larger scale are a challenging topic in Earth sciences. Petrophysical properties of rocks are severely affected by boundary conditions, rock fabric/microstructure, and tectonics that require a multiscale approach to be properly defined. Here we (1) report laboratory measurements of density, porosity, permeability, and P wave velocities at increasing confining pressure conducted on Miocene foredeep sandstones (Frosinone Formation); (2) compare the laboratory results with larger-scale geophysical investigations; and (3) discuss the effect of thrusting on the properties of sandstones. At ambient pressure, laboratory porosity varied from 2.2% to 13.8% and P wave velocities (Vp) from 1.5 km/s to 2.7 km/s. The P wave velocity increased with confining pressure, reaching between 3.3 km/s and 4.7 km/s at 100 MPa. In situ Vp profiles, measured using sonic logs, matched the ultrasonic laboratory measurement well. The permeability varied between 1.4 × 10 15m2 and 3.9 × 10 15m2 and was positively correlated with porosity. The porosity and permeability of samples taken at various distances to the Olevano–Antrodoco fault plane progressively decreased with distance while P wave velocity increased. At about 1 km from the fault plane, the relative variations reached 43%, 65%, and 20% for porosity, permeability, and P wave velocity, respectively. This suggests that tectonic loading changed the petrophysical properties inherited from sedimentation and diagenesis. Using field constraints and assuming overburden-related inelastic compaction in the proximity of the fault plane, we conclude that the fault reached the mechanical condition for rupture in compression at differential stress of 64.8 MPa at a depth of 1500 m.
    Description: Published
    Description: 9077-9094
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: open
    Keywords: Petrophysical properties of sandstone ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-13
    Description: Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activitymay occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplaymay exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements andmay hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing.
    Description: Published
    Description: 5356-5368
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: analogue models ; strain ; stress ; eruption ; flank dynamics ; GPS ; faults ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-09
    Description: The 11–13 January 2011 eruptive episode at Etna volcano occurred after several months of increasing ash emissions from the summit craters, and was heralded by increasing SO2 output, which peaked at ∼5000 megagrams/day several hours before the start of the eruptive activity. The eruptive episode began with a phase of Strombolian activity from a pit crater on the eastern flank of the SE‐Crater. Explosions became more intense with time and eventually became transitional between Strombolian and fountaining, before moving into a lava fountaining phase. Fountaining was accompanied by lava output from the lower rim of the pit crater. Emplacement of the resulting lava flow field, as well as associated lava fountain‐ and Strombolian‐phases, was tracked using a remote sensing network comprising both thermal and visible cameras. Thermal surveys completed once the eruptive episode had ended also allowed us to reconstruct the emplacement of the lava flow field. Using a high temporal resolution geostationary satellite data we were also able to construct a detailed record of the heat flux during the fountain‐fed flow phase and its subsequent cooling. The dense rock volume of erupted lava obtained from the satellite data was 1.2 × 106 m3; this was emplaced over a period of about 6 h to give a mean output rate of ∼55 m3 s−1. By comparison, geologic data allowed us to estimate dense rock volumes of ∼0.85 × 106 m3 for the pyroclastics erupted during the lava fountain phase, and 0.84–1.7 × 106 m3 for lavas erupted during the effusive phase, resulting in a total erupted dense rock volume of 1.7–2.5 × 106 m3 and a mean output rate of 78–117 m3 s−1. The sequence of events and quantitative results presented here shed light on the shallow feeding system of the volcano.
    Description: Published
    Description: B11207
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: Etna ; lava fountains ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-09
    Description: We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to- 810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG’s SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of 28 106 m3, with a maximum intensity of 227 m3 s 1 being obtained for the 12 August 2011 event. The timeaveraged output over the year was 0.9 m3 s 1, this being the same as the rate that has characterized Etna’s effusive activity for the last 40 years.
    Description: We are grateful to EUMETSAT for SEVIRI data.
    Description: Published
    Description: L06305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: satellite ; lava fountains ; Etna ; erupted volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-25
    Description: The largest events of the 1997 Umbria-Marche sesimic sequence were the two September 26 earthquakes of Mw=5.7 (00:33 GMT) and Mw=6.0 (09:40 GMT), which caused severe damage and ground cracks in a wide area around the epicenters. We created an ERS-SAR differenrtial interferogram, where nine fringes are visible in and around the Colfiorito basin, corresponding to 25 cm of coseismic surface dispalacements. GPS data show a maximum horizontal displacement...
    Description: Published
    Description: 883-886
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Colfiorito, SAR, GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-07
    Description: Integrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.
    Description: The petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.
    Description: Published
    Description: 5659–5678
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Petrology ; eruption ; GPS ; volcano seismology ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-24
    Description: On 24 August 2013 a sudden gas eruption from the ground occurred in the Tiber river delta, nearby Rome's international airport of Fiumicino. We assessed that this gas, analogous to other minor vents in the area, is dominantly composed of deep, partially mantle-derived CO2, as in the geothermal gas of the surrounding Roman Comagmatic Province. Increased amounts of thermogenic CH4 are likely sourced from Meso-Cenozoic petroleum systems, overlying the deep magmatic fluids. We hypothesize that the intersection of NE-SW and N-S fault systems, which at regional scale controls the location of the Roman volcanic edifices, favors gas uprising through the impermeable Pliocene and deltaic Holocene covers. Pressurized gas may temporarily be stored below these covers or within shallower sandy, permeable layers. The eruption, regardless the triggering cause—natural or man-made, reveals the potential hazard of gas-charged sediments in the delta, even at distances far from the volcanic edifices.
    Description: Published
    Description: 5632–5636
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; deep CO2 ; Tiber river delta ; thermogenic CH4 ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-05
    Description: Destructive earthquakes are rare in France yet pose a sizable seismic hazard, especially when critical infrastructures are concerned. Only a few destructive events have occurred within the instrumental period, the most important being the 11 June 1909, Lambesc (Provence) earthquake. With a magnitude estimated at 6.2 [Rothé, 1942], the event was recorded by 30 observatories and produced intensity IX effects in the epicentral area, ~30 km north of Marseille. We collected 30 seismograms, leveling data and earthquake intensities to assess the magnitude and possibly the focal mechanism of this event. Following this multidisciplinary approach, we propose a source model where all relevant parameters are constrained by at least two of the input datasets. Our reappraisal of the seismological data yielded Mw 5.8-6.1 (6.0 preferred) and Ms 6.0, consistent with the magnitude from intensity data (Me 5.8) and with constraints derived from modeling of coseismic elevation changes. Hence, we found the Lambesc earthquake to have been somewhat smaller than previously reported. Our datasets also constrain the geometry and kinematics of faulting, suggesting that the earthquake was generated by reverse-right lateral slip on a WNW-striking, steeply north-dipping fault beneath the western part of the Trévaresse fold. This result suggests that the fold, located in front of the Lubéron thrust, plays a significant role in the region’s recent tectonic evolution. The sense of slip obtained for the 1909 rupture also agrees with the regional stress field obtained from earthquake focal mechanisms and microtectonic data as well as recent GPS data.
    Description: Published
    Description: 2454
    Description: partially_open
    Keywords: Lambesc earthquake ; France ; historical seismograms ; displacement modeling ; macroseismic data ; geodetic data ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2978 bytes
    Format: 4419432 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-04
    Description: We present a neotectonic model of ongoing lithosphere deformation and a corresponding estimate of long-term shallow seismicity across the Africa-Eurasia plate boundary, including the eastern Atlantic, Mediterranean region, and continental Europe. GPS and stress data are absent or inadequate for the part of the study area covered by water. Thus, we opt for a dynamic model based on the stress-equilibrium equation; this approach allows us to estimate the long-term behavior of the lithosphere (given certain assumptions about its structure and physics) for both land and sea areas. We first update the existing plate model by adding five quasi-rigid plates (the Ionian Sea, Adria, Northern Greece, Central Greece, and Marmara) to constrain the deformation pattern of the study area. We use the most recent datasets to estimate the lithospheric structure. The models are evaluated in comparison with updated datasets of geodetic velocities and the most compressive horizontal principal stress azimuths. We find that the side and basal strengths drive the present-day motion of the Adria and Aegean Sea plates, whereas lithostatic pressure plays a key role in driving Anatolia. These findings provide new insights into the neotectonics of the greater Mediterranean region. Finally, the preferred model is used to estimate long-term shallow seismicity, which we retrospectively test against historical seismicity. As an alternative to reliance on incomplete geologic data or historical seismic catalogs, these neotectonic models help to forecast long-term seismicity, although requiring additional tuning before seismicity rates are used for seismic hazard purposes.
    Description: Published
    Description: 5311–5342
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: open
    Keywords: Tectonics ; Earthquake rates ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-25
    Description: We present crustal deformation results from a geodetic experiment (Retreating-Trench, Extension, and Accretion Tectonics (RETREAT)) focused on the northern Apennines orogen in Italy. The experiment centers on 33 benchmarks measured with GPS annually or more frequently between 2003 and 2007, supplemented by data from an additional older set of 6 campaign observations from stations in northern Croatia, and 187 continuous GPS stations within and around northern Italy. In an attempt to achieve the best possible estimates for rates and their uncertainties, we estimate and filter common mode signals and noise components using the continuous stations and apply these corrections to the entire data set, including the more temporally limited campaign time series. The filtered coordinate time series data are used to estimate site velocity. We also estimate spatially variable seasonal site motions for stations with sufficient data. The RMS scatter of residual time series are generally near 1 mm and 4 mm, horizontal and vertical, respectively, for continuous and most of the new campaign stations, but scatter is slightly higher for some of the older campaign data. Velocity uncertainties are below 1 mm/yr for all but one of the stations. Maximum rates of site motion within the orogen exceed 3 mm/yr (directed NE) relative to stable Eurasia. This motion is accommodated by extension within the southwestern and central portions of the orogen, and shortening across the foreland thrust belt to the northeast of the range. The data set is consistent with contemporaneous extension and shortening at nearly equal rates. The northern Apennines block moves northeast faster than the Northern Adria microplate. Convergence between the Northern Apennines block and the Northern Adria microplate is accommodated across a narrow zone that coincides with the northeastern Apennines range front. Extension occurs directly above an intact vertically dipping slab inferred by previous authors from seismic tomography. The observed crustal deformation is consistent with a buried dislocation model for crustal faulting, but associations between crustal motion and seismically imaged mantle structure may also provide new insights on mantle dynamics.
    Description: Published
    Description: B04408
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: GPS, northern Apennines, retreat, Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...