ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (7)
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (4)
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
  • Agu  (9)
  • Nature Publishing Group
Collection
Years
  • 1
    Publication Date: 2024-05-09
    Description: Recent strong (M 6.6) earthquakes in Greece are examined from the point of view of two current, but disparate, approaches to long-term seismogenesis. These are the evolving stress field (ESF) approach, in which earthquakes are considered to be triggered by accumulated stress changes from past earthquakes and tectonic loading on the major faults, and the precursory scale increase (Y) approach, in which a major earthquake is preceded in the long term by an increase in minor earthquake occurrences, with the magnitude of the precursory earthquakes, and the precursor time and area all scaling with the major earthquake magnitude. The strong earthquakes are found to be consistent with both approaches, and it is inferred that both approaches have a relevant role to play in the description of the long-term generation process of major earthquakes. A three-stage faulting model proposed previously to explain the Y phenomenon involves a major crack, which eventually fractures in the major earthquake, being formed before the onset of precursory seismicity. Hence we examine whether ESF can account for the formation of the major crack by examining the accumulated stress changes at the time of the onset of Y for each strong earthquake. In each case, the answer is in the affirmative; there is enhanced stress in the vicinity of the main shock at the time of the onset. The same is true for most, but not all, of the locations of precursory earthquakes.
    Description: Published
    Description: B05318
    Description: reserved
    Keywords: seismogenesis ; Greece: ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Carbon dioxide is the second most abundant volatile species in magmas after water (Johnson et al., 1994) but its role on eruption dynamics is still largely unknown. The effects of the presence of CO2 in the Agnano Monte Spina eruption (4100 BP, Phlegrean Fields, Italy) are here evaluated by simulating the eruption dynamics from the base of the volcanic conduit up into the atmosphere. The numerical simulations consider multiphase flow dynamics and couple the steady-state, one-dimensional magma ascent model of Papale (2001) and the transient, axisymmetric pyroclast dispersal model of Neri et al. (2003). The main input parameters of the models were based on eruptive conditions estimated from the deposits. A parametric study has been performed on H2O and CO2 concentrations in the erupted magma. The addition of CO2 results in increased volatile saturation pressure and complex non-linear changes in the conduit flow. Nonetheless, within the range of conditions explored, this volatile scarcely affects the eruption style and dynamics in the atmosphere, which are principally controlled by the H2O content. The different roles of the two volatiles in the large-scale eruption dynamics are mostly the result of the competing changes induced by CO2 on vent conditions.
    Description: Published
    Description: L06318
    Description: JCR Journal
    Description: reserved
    Keywords: carbon dioxide ; Phlegrean Fields ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We investigate the dynamic traction evolution during the spontaneous propagation of a 3-D earthquake rupture governed by slip-weakening or rate- and state-dependent constitutive laws and accounting for thermal pressurization effects. The analytical solutions as well as temperature and pore pressure evolutions are discussed in the companion paper by Bizzarri and Cocco. Our numerical experiments reveal that frictional heating and thermal pressurization modify traction evolution. The breakdown stress drop, the characteristic slip-weakening distance, and the fracture energy depend on the slipping zone thickness (2w) and hydraulic diffusivity (w). Thermally activated pore pressure changes caused by frictional heating yield temporal variations of the effective normal stress acting on the fault plane. In the framework of rate- and state-dependent friction, these thermal perturbations modify both the effective normal stress and the friction coefficient. Breakdown stress drop, slip-weakening distance, and specific fracture energy (J/m2) increase for decreasing values of hydraulic diffusivity and slipping zone thickness. We propose scaling relations to evaluate the effect of w and w on these physical parameters. We have also investigated the effects of choosing different evolution laws for the state variable. We have performed simulations accounting for the porosity evolution during the breakdown time. Our results point out that thermal pressurization modifies the shape of the slip-weakening curves. For particular configurations, the traction versus slip curves display a gradual and continuous weakening for increasing slip: in these cases, the definitions of a minimum residual stress and the slip-weakening distance become meaningless.
    Description: Published
    Description: B05304
    Description: JCR Journal
    Description: reserved
    Keywords: thermal pressurization ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We show that the low-pass filtered, peak amplitudes of initial P- and S-wave seismic signals recorded in the vicinity of an occurring earthquake source correlates with the earthquake magnitude and may be used for real-time estimation of the event size in seismic early warning applications. The earthquake size can be therefore estimated using only a couple of seconds of signal from the P- or S-wave onsets, i.e. while the rupture itself is still propagating and rupture dimension is far from complete. We argue that dynamic stress release and/or slip duration on the fault in the very early stage of seismic fracture, scales both with the observed peak amplitude and with the elastic energy available for fracture propagation. The probability that a fracture grows to a larger size should scale with the energy initially available.
    Description: Published
    Description: L23312
    Description: JCR Journal
    Description: partially_open
    Keywords: Earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We investigate the role of frictional heating and thermal pressurization on earthquake ruptures by modeling the spontaneous propagation of a three-dimensional (3-D) crack on a planar fault governed by assigned constitutive laws and allowing the evolution of effective normal stress. We use both slip-weakening and rate- and state-dependent constitutive laws; in this latter case we employ the Linker and Dieterich evolution law for the state variable, and we couple the temporal variations of friction coefficient with those of effective normal stress. In the companion paper we investigate the effects of thermal pressurization on the dynamic traction evolution. We solve the 1-D heat conduction equation coupled with Darcy’s law for fluid flow in porous media. We obtain a relation that couples pore fluid pressure to the temperature evolution on the fault plane. We analytically solve the thermal pressurization problem by considering an appropriate heat source for a fault of finite thickness. Our modeling results show that thermal pressurization reduces the temperature increase caused by frictional heating. However, the effect of the slipping zone thickness on temperature changes is stronger than that of thermal pressurization, at least for a constant porosity model. Pore pressure and effective normal stress evolution affect the dynamic propagation of the earthquake rupture producing a shorter breakdown time and larger breakdown stress drop and rupture velocity. The evolution of the state variable in the framework of rate- and state-dependent friction laws is very different when thermal pressurization is active. In this case the evolution of the friction coefficient differs substantially from that inferred from a slip-weakening law. This implies that the traction evolution and the dynamic parameters are strongly affected by thermal pressurization.
    Description: Published
    Description: B05303
    Description: JCR Journal
    Description: reserved
    Keywords: thermal pressurization ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We analyze the coseismic stress perturbation during the 17 June 2000 south Iceland seismic sequence; the main shock (Ms 6.6) was followed by three large events within a few tens of seconds (8, 26, and 30 s) located within 80 km. The aim of this paper is to investigate short-term fault interaction and instantaneous triggering. This happens when a fault perturbed by a stress change fails before the end of the transient stress perturbation. We compute the shear, normal, and Coulomb stress changes as functions of time in a stratified elastic half-space by using discrete wave number and reflectivity methods. We calculate dynamic stresses caused by the main shock at the hypocenters of these three subsequent events. Our numerical results show that the onset of the last two events is slightly delayed with respect to the arrival time of the second positive peak of Coulomb stress variation, while the first event occurred after the first positive stress peak. We have also analyzed the response of a spring slider system representing a fault governed by a rate- and state-dependent friction law, perturbed by shear and normal stress variations caused by the main shock. The fault response to the computed stress perturbations is always clock advanced. We have found suitable constitutive parameters of the modeled fault that allow the instantaneous dynamic triggering of these three earthquakes. If the initial sliding velocity is comparable with the tectonic loading velocity, we obtained failure times close to the observed origin times for low values of the initial effective normal stress.
    Description: Published
    Description: B03302
    Description: JCR Journal
    Description: reserved
    Keywords: seismic sequence ; Iceland ; 2000 ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Sulfur speciation in volcanic gases is a potentially valuable tracer of degassing processes at volcanoes. Hitherto, observations of sulfur speciation in volcanic gas plumes have however been limited both in number and quality. Here, we report on periodic measurements of SO2 to H2S proportions in the volcanic gases from La Fossa volcano (Vulcano Island) performed during 2004–2006, a period which encompasses two heating events of the fumarolic field in January–April 2005 and December 2005. Results indicate a systematic relative increase (by a factor of 2–6) of SO2 to H2S proportions in the fumaroles during the heating events, which we ascribe to a temperature increase in the mixing zone between magmatic and hydrothermal fluids. We also demonstrate that sulphur speciation in La Fossa fumaroles reflects re-equilibration within a poly-baric hydrothermal system, and that this hydrothermal re-equilibration erases the pristine SO2/H2S ratios of any magma-derived sulphur present.
    Description: Published
    Description: L21315
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic gases ; Vulcano Island ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In order to evaluate the influence of soil permeability on soil CO2 flux measurements performed with the dynamic concentration method, several tests were carried out using soils characterized by different permeability values and flow rates. A special device was assembled in the laboratory to create a one-dimensional gas flow through a soil of known permeability. Using the advective-diffusion theory, a physical model to predict soil concentration gradients was also developed. The calculated values of CO2 concentrations at different depths were compared with those measured during the tests and a good agreement was found. Four soils with different gas permeability (3.6 10 2 to 1.23 102 mm2) were used. The CO2 flux values were varied from 0.1 kg m 2 d 1 up to 22 kg m 2 d 1. On the basis of these results, a new empirical equation for calculating very accurate soil CO2 flux from dynamic concentration and soil permeability values was proposed. As highlighted by the experimental data, the influence of soil permeability on CO2 flux measurements depends on various factors, of which the flow rate of the suction pump is the most important. Setting low values for the pumping flux (0.4–0.8 L min 1), the mean error due to soil permeability was lower than 5%. Finally, the method was tested by measuring the CO2 flux in a grid of 48 sampling sites on Vulcano (Aeolian Islands, Italy), and the global error, affecting the CO2 flux measurements in a real application, was evaluated.
    Description: Published
    Description: B05202
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux measurements ; volcanic areas ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We image the rupture history of the 2009 L’Aquila (Central Italy) earthquake using a nonlinear joint inversion of strong motion and GPS data. This earthquake ruptured a normal fault striking along the Apennines axis and dipping to the SW. The inferred slip distribution is heterogeneous and characterized by a small, shallow slip patch located up-dip from the hypocenter (9.5 km depth) and a large, deeper patch located southeastward. The rupture velocity is larger in the up-dip than in the along-strike direction. This difference can be partially accounted by the crustal structure, which is characterized by a high velocity layer above the hypocenter and a lower velocity below. The latter velocity seems to have affected the along strike propagation since the largest slip patch is located at depths between 9 and 14 km. The imaged slip distribution correlates well with the on-fault aftershock pattern as well as with mapped surface breakages.
    Description: Published
    Description: L19304
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: 2009 L'Aquila earthquake ; kinematic inversion ; joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...