ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
  • Springer-Verlag  (7)
  • AGU  (6)
  • Nature Publishing Group
Collection
Years
  • 1
    Publication Date: 2021-06-25
    Description: The Antarctic Geological Drilling (ANDRILL) program — a collaboration between Germany, Italy, New Zealand, and the United States that is one of the larger programs endorsed by the International Polar Year (IPY; http:// www .ipy .org) — successfully completed the drilling phase of the Southern McMurdo Sound (SMS) Project in December 2007. This second drill core of the program’s campaign in the western Ross Sea, Antarctica, complements the results of the first drilling season [Naish et al., 2007] by penetrating deeper into the stratigraphic section in the Victoria Land Basin and extending the recovered time interval back to approximately 20 million years ago.
    Description: Published
    Description: 89-90
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: ANDRILL ; SMS Project ; MMCO (Middle Miocene Climatic Optimum) ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Stress inversion of the twenty best-quality earthquake fault-plane solutions available in the area of the 1908 Messina earthquake showed a nearly uniform extensional regime with σmin constrained between N284°E and N312°E, coinciding with the direction of extension derived from geostructural data. The misfits of earthquake nodal planes and related slip vectors to the stress tensor allowed us to identify the fault planes of thirteen of the earthquakes used for inversion. In particular, the fault plane of 1908 earthquake was found in the north-trending east-dipping nodal plane of the focal mechanism. These findings and strain tensor estimates performed with the same dataset lead us to propose that in spite of stress uniformity detected over the study area the seismic strain orientations change significantly in the crustal volume under investigation due to different fault orientations in the different sectors. However, when comparing strong earthquakes with background seismicity in a given sector the strain orientations are found to be similar.
    Description: Published
    Description: 1-5
    Description: partially_open
    Keywords: Seismology: Earthquake parameters ; Seismology: Seismicity and seismotectonics ; Tectonophysics: Stresses—crust and lithosphere ; Information Related to Geographic Region: Europe ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 170488 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Eruption forecasting and hazard assessments at the restless Campi Flegrei caldera, within the Neapolitan volcanic area, have been performed using stratigraphical, volcanological, structural and petrological data. On the basis of the reconstructed variation of eruption magnitude through time, we hypothesize that the most probable maximum expected event is a medium-magnitude explosive eruption, fed by trachytic magma. Such an eruption could likely occur in the north-eastern sector of the caldera floor that is under a tensile stress regime, when the ongoing deformation will generate mechanical failure of the rocks. A vent could open also in the western sector, at the intersection of two fault systems contemporaneously activated, as happened in the last eruption at Monte Nuovo. The eruption could likely be preceded by precursors apparent to the population, such as ground deformation, seismicity and increase in gas emissions. It will probably alternate between magmatic and phreatomagmatic phases with the generation of tephra fallout, and dilute and turbulent pyroclastic currents. During and/or after the eruption, the re-mobilization of ash by likely heavy rains, could probably generate mud flows. In order to perform a zoning of the territory in relation to the expected volcanic hazards, we have constructed a comprehensive hazard map. On this map are delimited (I) areas of variable probability of opening of a new vent, (II) areas which could be affected by variable load of fallout deposits, and (III) areas over which pyroclastic currents could flow. The areas in which a vent could likely open have been defined on the basis of the dynamics of the ongoing deformation of the caldera floor. To construct the fallout hazard map we have used the frequency of deposition of fallout beds thicker than 10 cm, the frequency of load on the ground by tephra fallout and the direction of dispersal axes of the deposits of the last 5 ka, and the limit load of collapse for the variable types of roof construction. The pyroclastic-current hazard map is based on the areal distribution and frequency of pyroclastic-current deposits of the last 5 ka.
    Description: Published
    Description: 514-530
    Description: partially_open
    Keywords: Volcanic hazard ; Campi Flegrei ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 478 bytes
    Format: 1260848 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Most flank eruptions within a central stratovolcano are triggered by lateral draining of magma from its central conduit, and only few eruptions appear to be independent of the central conduit. In order to better highlight the dynamics of flank eruptions in a central stratovolcano, we review the eruptive history of Etna over the last 100 years. In particular, we take into consideration the Mount Etna eruption in 2001, which showed both summit activity and a flank eruption interpreted to be independent from the summit system. The eruption started with the emplacement of a ~N-S trending peripheral dike, responsible for the extrusion of 75% of the total volume of the erupted products. The rest of the magma was extruded through the summit conduit system (SE crater), feeding two radial dikes. The distribution of the seismicity and structures related to the propagation of the peripheral dike and volumetric considerations on the erupted magmas exclude a shallow connection between the summit and the peripheral magmatic systems during the eruption. Even though the summit and the peripheral magmatic systems were independent at shallow depths (〈3 km b.s.l.), petro-chemical data suggest that a common magma rising from depth fed the two systems. This deep connection resulted in the extrusion of residual magma from the summit system and of new magma from the peripheral system. Gravitational stresses predominate at the surface, controlling the emplacement of the dikes radiating from the summit; conversely, regional tectonics, possibly related to N-S trending structures, remains the most likely factor to have controlled at depth the rise of magma feeding the peripheral eruption.
    Description: Published
    Description: 517-529
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Central volcanoes ; Summit and flank eruptions ; Dikes ; Tectonics ; Volcano load ; Mount Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Tephra fallout associated with renewal of volcanism at the Campi Flegrei caldera is a serious threat to the Neapolitan area. In order to assess the hazards related with tephra loading, we have considered three different eruption scenarios representative of past activity: a high-magnitude event similar to the 4.1 ka Agnano-Monte Spina eruption, a medium-magnitude event, similar to the ∼3.8 ka Astroni 6 eruption, and a low-magnitude event similar to the Averno 2 eruption. The fallout deposits were reconstructed using the HAZMAP computational model, which is based on a semi-analytical solution of the two-dimensional advection– diffusion–sedimentation equation for volcanic tephra. The input parameters into the model, such as total erupted mass, eruption column height, and bulk grain-size and components distribution, were obtained by best-fitting field data. We carried out tens of thousands simulations using a statistical set of wind profiles, obtained from NOAA reanalysis. Probability maps, relative to the considered scenarios, were constructed for several tephra loads, such as 200, 300 and 400 kg/m2. These provide a hazard assessment for roof collapses due to tephra loading that can be used for risk mitigation plans in the area.
    Description: Published
    Description: 259–273
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Tephra fallout hazard ; Tephra loading ; Campi Flegrei caldera ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The AND-2A drillcore (Antarctic Drilling Program – ANDRILL) was successfully completed in late 2007 on the Antarctic continental margin (southern McMurdo Sound, Ross Sea) with the aim of tracking ice-proximal to shallow marine environmental fluctuations and to document the 20-Ma evolution of the Erebus Volcanic Province. Lava clasts and tephra layers from the AND-2A drillcore were investigated from a petrographic and stratigraphic point of view and analyzed by the 40Ar–39Ar laser technique in order to constrain the age model of the core and to gain information on the style and nature of sediment deposition in the Victoria Land Basin since Early Miocene. Ten out of 17 samples yielded statistically robust 40Ar–39Ar ages, indicating that the AND-2A drillcore recovered !230 m of Middle Miocene (~128–358 meters below sea floor, ~11.5–16.0 Ma) and 〉780 m of Early Miocene (~358–1093 48 meters below sea floor, ~16.0–20.1 Ma). Results also highlight a nearly continuous stratigraphic record from at least 358 meters below sea floor down hole, characterized by a mean sedimentation rate of ~19 cm/ka, possible oscillations of no more than a few hundreds of ka and a break within ~17.5–18.1 Ma. Comparison with available data from volcanic deposits on land, suggests that volcanic rocks within the AND-2A core were supplied from the south, possibly with source areas closer to the drill site for the upper core levels, and from 358 meters below sea floor down hole, with the “proto-Mount Morning” as the main source.
    Description: In press
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: open
    Keywords: ANDRILL SMS ; 40Ar–39Ar geochronology ; Erebus Volcanic Province ; McMurdo Sound ; lava clasts ; sedimentation rate ; tephra layers ; Victoria Land Basin ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Changes in Coulomb failure stress (ΔCFS) induced by dike propagation during two flank eruptions on Mt. Etna (1981 and 2001) are calculated for the most seismically active faults on the east slope of the volcano (the right-lateral Timpe fault system, oriented NNW-SSE, and the left-lateral Pernicana fault, oriented E-W). Calculations performed using Coulomb 2.5 software indicate that intrusion of a NNW dike on the NW side of the volcano (1981 eruption) rises ΔCFS on both the Timpe and Pernicana faults. In contrast, intrusion of a N-S dike at high elevation on the south flank (2001 eruption) rises ΔCFS only on Timpe fault System. These results are compatible with the observed pattern of seismicity, but emphasize an extremely heterogeneous state of stress on the east flank of the volcano.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Earthquake interaction, forecasting, and prediction ; Seismology: Volcano seismology ; Tectonophysics: Stresses: crust and lithosphere ; Volcanology: Magma migration and fragmentation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 288903 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Understanding how shallow magma is emplaced within volcanoes is crucial for hazard assessment. The 2002–2003 Stromboli eruption provides the opportunity to investigate shallow magma emplacement resulting from orthogonal feeder dikes and its possible effects. Stromboli erupted in 2002–2003, when effusive activity replaced Strombolian activity. On December 28, a NE-SW fissure propagated from the lava-filled northernmost summit crater. On December 29, a NW-SE fissure propagated north of the craters, feeding NW-SE aligned vents. On December 30, this area collapsed, reaching the sea and generating a tsunami. In mid February 2003, the NW-SE fissure became inactive, while the NE-SW effusive fissure continued until July. A model for shallow magma emplacement is proposed. The lateral propagation of a NE-SW dike from the northernmost crater was triggered. Below, a NW-SE dike, propagating from the magma-filled NE tip of the NE-SW elongated conduit, fed the NW-SE aligned vents. In February, the conduit periphery became solidified, freezing the NW-SE dike, and the transport of magma was limited to the central part, focusing its rise below the craters. This fed the NE-SW fissure until the supply decreased further (July), returning to the ordinary level sustaining Strombolian activity. Orthogonal dike emplacement followed the trajectories of the maximum (gravitational) stress s1, partly controlled by the irregular topography of the uppermost edifice. The emplacement of orthogonal dikes in a limited area is feasible at non-perfectly conical active volcanoes, where the maximum gravitational stress may show variations from a purely radial path.
    Description: Published
    Description: L17310
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3375462 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Dikes within stratovolcanoes are commonly expected to have radial patterns. However, other patterns may also be found, due to regional stresses, magmatic reservoirs and topographic variations. Here, we investigate dike patterns within volcanic edifices by studying dike and fissure complexes at Somma-Vesuvius and Etna (Italy) using analogue models. At the surface, the dikes and fissures show a radial configuration. At depths of tens to several hundreds of metres, in areas exposed by erosion, tangential and oblique dikes are also present. Analogue models indicate that dikes approaching the flanks of cones, regardless of their initial orientation, reorient to become radial (parallel to the maximum gravitational stress). This re-orientation is a significant process in shallow magma migration and may also control the emplacement of dikefed fissures reaching the lower slopes of the volcano.
    Description: This work was partly financed with DPC-INGV LAVA Project.
    Description: Published
    Description: 219-223
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Dike propagation ; Central volcanic edifices ; Stress ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We present new wellbore breakout data from oil exploration wells drilled in southern Peninsular Italy, from the Tyrrhenian shelf through the Apenninic mountain belt and foredeep, eastward to the undeformed Adria foreland. From the analysis of 64 wells, we observe Shmin oriented around NE-SW, perpendicular to the trend of the Apennines, both within the belt and in the eastern foredeep. Some variations are observed in the few wells analyzed on the Tyrrhenian shelf, possibly due to local tectonic structures, such as transverse NE-SW oriented extensional basins. The Apulian platform overthrust by the Apenninic mountains at 3-4 km depth, shows a very consistent direction of Shmin oriented N40°-50°E, in agreement with the stress regime inferred from focal mechanisms of strong earthquakes at depths of 10-15 km, which show NE extension, mostly accomplished by normal faulting. The overlying sedimentary and allochthonous units of the Apenninic belt exhibit the same NE Shmin direction, but show a larger scatter. Breakout data demonstrate that Quaternary compressional tectonism has ended, as Shmin is oriented NE also in the undeformed foreland as far as 50 km NE from the seismic belt. In the easternmost sector of the Adria foreland there are suggestions of a nearly isotropic horizontal stress field, as most wells do not show significant ellipticity.
    Description: Published
    Description: 3119-3122
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: active stress ; southern Italy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...